Magnetic Properties and Magnetocaloric effect in $La_{1-x}Nd_xFe_{10.5}Si_{2.5}$ (x = 0.2, 0.4, 0.6) Alloys

Wen-Zhe Nan¹, Tran Dang Thanh¹, Seong-Cho Yu^{1*}, Gnu Nam², Tae-Soo You², Hong-Guang Piao³ and Liqing Pan³

¹Department of Physics, Chungbuk National University, Cheongju 361-763, South Korea
²Department of Chemistry, Chungbuk National University, Cheongju, 361-763, South Korea
³College of Science, China Three Gorges University, Yichang, 443002, China
Corresponding authors: scyu@cbnu.ac.kr

In this report, we present a detailed studies on the magnetic properties and MCE of $La_{1-x}Nd_xFe_{10.5}Si_{2.5}$ (*x*= 0.2, 0.4, 0.6) alloys. The samples were prepared from pure (99.9%) La, Nd, Fe and Si metals by an arc-melting method in a high purity argon atmosphere. And then, the products were sealed in a fused-silica jacket under vacuum and annealed at 1323 K for two weeks. According to the powder X-ray diffraction patterns, the crystal structure of an as-cast sample displayed the elemental Fe-type structure, but after the annealing process, they were transformed into the NaZn₁₃-type structure.

Magnetic measurements versus temperature (T = 70-300 K) and magnetic field (H = 0.3T) were performed on a vibrating sample magnetometer (VSM). The M(T) curves for samples, all the samples exhibiting a ferromagnetic-paramagnetic (FM-PM) phase transition at Curie temperature $T_{\rm C} = 252$, 250, and 246 K for x =0.2, 0.4, and 0.6, respectively. This FM-PM phase transition can be seen more clearly if H/M is plotted versus M^2 [1]. The nonlinear parts in the low field region at temperatures below and above $T_{\rm C}$ are driven toward two opposite directions, revealing the FM-PM phase separation. A negative slope corresponding to a first-order phase transition according to Banerjeer's criteria [2] has been observed in H/M versus M^2 curves. Based on isothermal magnetization data, M(H, T), we have calculated $\Delta S_{\rm M}(T)$ data for samples under an applied magnetic field change H = 3 T. As a function of temperature, the $\Delta S_{\rm M}(T)$ curves show a maximum (denote as $|\Delta S_{\rm Mmax}|$) at around their $T_{\rm C}$. With H = 3 T, the values of $|\Delta S_{\rm Mmax}|$ are found to be 3.8, 3.6, and 3.4 J×kg⁻¹ · K⁻¹ for x = 0.2, 0.4, 0.6 samples, respectively. The nature of magnetic properties and MCE in the La_{1-x}Nd_xFe_{10.5}Si_{2.5} alloys will be discussed thoroughly by mean of the effect of Ce-doping concentration.

References

- A. Arrott, "Criterion for ferromagnetism from observations of magnetic isotherms", Phys. Rev., 108(6) 1394, (1957).
- [2] S. K. Banerjee, "On a generalised approach to first and second order magnetic transitions", *Phys. Lett.* 12, 16, (1964).