Magnetic anisotropy properties of tetragonal and cubic Mn₃Ga thin films

H. W. Bang^{1*}, W. S. Yoo¹, C. M. Kim¹, S. H. Lee¹, J. Gu², M. H. Jung^{1*}

¹Department of Physics, Sogang University, Seoul 121-742 Korea

²Department of Physics and Astronomy, California State University, Long Beach, CA 90840, USA

^{*}E-mail: mhjung@sogang.ac.kr

 Mn_3Ga has received renewed attention in recent years because of the variation of magnetic properties depending on the crystal structure. One is a triangular antiferromagnet for the hexagonal ($D0_{19}$) phase, which is easily obtained by arc melting. The other is a ferrimagnet for the tetragonal ($D0_{22}$) phase, which is achieved by annealing the hexagonal material at high temperatures. Another is an antiferromagnet for the cubic Heusler ($D0_3$) phase, which is synthesized using a nonequilibrium technique, but has not been studied in experiments. The cubic phase has been predicted to exhibit completely compensated ferrimagnetic spin order with a half metallic band structure.

This report focuses on the tetragonal and cubic Mn₃Ga thin films grown on MgO(100) substrates without any buffer layer by DC/RF magnetron sputtering method. The optimal deposition conditions for tetragonal phase were found to be 400°C of deposition temperature, 35 W of RF power, and 5 mTorr of Ar gas pressure in our sputtering system. The tetragonal Mn₃Ga films exhibit high perpendicular magnetic anisotropy, low saturation magnetization, and high spin polarization. Importantly, we first succeeded to fabricate the cubic Mn₃Ga films as varying the RF power. The cubic Mn₃Ga is an antiferromagnet with the Neel temperature $T_N = 420$ K, while the tetragonal Mn₃Ga is a ferromagnet with $T_C = 830$ K. Under certain conditions between two phases, there is a mixed phase of tetragonal and cubic structures, where we found a shift of hysteresis loop due to the exchange bias effect between the ferromagnetic/tetragonal and antiferromagnetic/cubic Mn₃Ga phases.