Influence of annealing temperature on structural and magnetic properties of LaMnO₃ nanoparticles

Pardi S. Tola^{*}, D. H. Kim, T. L. Phan and B. W. Lee^{*}

Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin, Gyeonggi 449-791, South Korea [†]Corresponding author: bwlee@hufs.ac.kr

It is known that stoichiometric LaMnO₃ is an A-type antiferromagnet with the Néel temperature $T_N = 135 \sim 140$ K. Recently, the thin films and nanoparticles based this material have attracted intensive interest because its magnetic and electrical properties can be controlled in a large temperature range from 60 to 300 K upon tuning the deficiency or excess of oxygen in non-stoichiometric compounds of LaMnO3±8, leading the mixed valence of Mn²⁺, Mn³⁺ and/or Mn⁴⁺ ions. Particularly, with non-stoichiometric compounds, one can easily fabricate transparent ferromagnetic conducting thin films. To get more insight into this problem, we fabricated $LaMnO_3$ nanoparticles (NPs), and then studied the influence of annealing temperature on structural and magnetic properties of NPs. Here, LaMnO₃ NPs were synthesized from precursors of lanthanum (III) acetate sesquihydrate, and manganese (II) acetate tetrahydrate by using a sol-gel method. As-prepared NPs were then annealed at different temperatures (T_{an}) of 600-1550 °C for 4 h in air. Crystal-structural analyses based on X-ray diffraction patterns revealed the samples crystallized in a rhombohedral structure, with the ratio of the lattice parameters c/a varying from ~2.3 for $T_{an} = 600$ °C to 2.6 for $T_{an} = 1550$ °C. By changing T_{an} , we fabricated LaMnO₃ particles with average sizes of 16-3000 nm, which were estimated by using the Scherrer equation and scanning electron microscope. Magnetization measurements indicated their ferromagnetic-paramagnetic phase transition temperature $(T_{\rm C})$ can be tuned in the range between 43 and 260 K. At 15 K, the saturation magnetization $(M_{\rm s})$ and coercivity (H_c) values are tunable in the ranges of 4~84 emu/g and 25~1300 Oe, respectively. We think that these changes in magnetism of NPs versus T_{an} are due to the changes in the concentration of Mn^{3+} and Mn^{4+} ions, lattice parameters, local geometrical structures, and grain sizes.