Influence of Cu doping on Magnetic and Magnetocaloric properties of La_{0.7}Ca_{0.3}Mn_{0.92}Cu_{0.08}O₃

T. A. Ho^{*}, S. H. Lim

Department of Materials Science and Engineering, Korea University, Seoul 136-713, South Korea

We have studied the influence of Cu doping on the magnetic properties and the magnetocaloric effect of La_{0.7}Ca_{0.3}Mn_{0.92}Cu_{0.08}O₃ prepared by using solid-state reaction. The temperature dependence of magnetization reveals that the presence of Cu dopant reduces the Curie temperature (T_c) to a value of ~ 165 K compared with parent compound La_{0.7}Ca_{0.3}MnO₃ (~248 K). Based on magnetic-field dependences of magnetization, M(H), we calculated the magnetic entropy change (ΔS_m), which reached a maximum ($|\Delta S_{max}| \approx 4.8$ J/ Kg K) around T_c corresponding to the relative cooling power (RCP) of 360 J/ kg under an applied field change $\Delta H = 50$ kOe. Additionally, based on Banerjee's criteria and universal curves of plotting the normalized entropy change as a function of the normalized temperature, we assess magnetic order existing in the sample. It was found that, the sample consists of second-order magnetic phase transition at magnetic field below 10 kOe and first-order magnetic phase transition at magnetic field above 10 kOe.