
- 286 -

Ⅰ. Introduction

Mobile web App runs on mobile browser.

The browser only hosts the application

presentation layer that is designed using

HTML5. For entreprises, a incommensurate

large portion for mobile applications is based

on making existing desktop or web-based

applications available on mobile devices[1].

one of the main challenge associated with

building mobile application is selecting the

appropriate architecture capable enough to

support a large and increasing number of

clients requests handled by a Client-Server

architecture simultaneously. However, web

server based on the thread-based approach

모바일 웹 어플리케이션을 구현하기 위한 Node.js 파일에 대한

조사

라이오넬* · 장종욱*

*동의대학교

An Investigation into the Applicability of Node.js as a Platform for

implementing Mobile Web Apps.

Lionel Nkenyereye* · Jong-Wook Jang*

*Dong-Eui University

E-mail : lionelnk82@gmail.com, jwjang@deu.ac.kr

요 약

본 논문에서는 오직 모바일 클라우드 컴퓨팅만을 사용하여 스마트폰 기반의 모바일 앱에서
Node.js 파일이 비동기 차단, 비 차단, 이벤트 기반 프로그램 패러다임을 제시한다. 또한 데이터베이
스로 잘 알려진 MongoDB를 사용하여 App 사용자에 의해 전송된 방대한 데이터들을 처리한다.
Node.js는 프로그래머가 동시 접속 문제를 해결하는 데 필요한 도구를 제공하는 것을 목표로 하고
있다. 원격 사용자들이 드라이버 입력을 전달하고 외부 응용 프로그램에서 출력을 제공하는 응용 프
로그램을 고려하고 있는데, 차량을 이용하여 실시간으로 데이터를 분석 할 수 있는 스마트 폰 인터

페이스 방식으로 응용 프로그램을 구현하여 제안 된 구조의 효과를 보여주고자 한다.

ABSTRACT

In this paper, we propose an architecture that affords mobile app based on nomadic

smartphone using not only mobile cloud computing- architecture but also a dedicated web

platform called Node.js built-in with the asynchronous, Nonblocking , Event-Driven programming

paradigm. Furthermore, the design of the proposed architecture takes document oriented database

known as MongoDB to deal with the large amount of data transmit by users of mobile web

access application. The Node.js aims to give the programmers the tools needed to solves the

large number of concurrent connections problem. We demonstrate the effectiveness of the

proposed architecture by implementing an android application responsible of real time analysis by

using a vehicle to applications smart phones interface approach that considers the smartphones to

acts as a remote users which passes driver inputs and delivers output from external applications.

키워드

Client-Server Architecture, event-driven programming, Mobile Web App, Node.js, performance

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps

- 287 -

might perform inefficiently as the number of

incoming network requests increases. That is

the reason that many industry such as eBay,

LinkedIn have started to adopt event-driven

programming as an option to respond to a

large number of concurrent requests and

achieve scalability more operationally [2].

The main contribution of this work is to

investigate the performance of Client-Server

Architecture that includes backend server, web

programming framework and database able to

support a large and increasing number of

concurrent clients’ requests. The performance

metrics are throughput, response time and error

rate to compare web applications developed

using JavaScript and JavaServelet.

Ⅱ. Node.js platform for concurent

connections

One of the advantage of Node.js over

thread-based framework is that Node.js has a

built-in single-thread event loop and

non-blocking model [4]. The second advantage

is that Node.js allows event-driven paradigm.

This event-driven paradigm is the key on

which interactive Node.js applications are

constructed. Node.js features the event-handler

that creates events and the main loop executes

the appropriate event. The event handlers in

Node.js are known as callback functions.

Therefore, callback functions are eventually

executed when the non-blocking operation

completes. So, when the event loop in Node.js

receives the completion feedback, it executes

the callbacks.

The figure 1 shows the model structure of

the Node.js platform [3]. At the core of

Node.js, we have the event loop running in a

single process and in infinite manner. This

means, that the event loop concepts looks

continually at what events have submitted and

what callbacks need to be executed. This

architecture ascribes Node.js a high level of

concurrency and therefore higher overall

throughput.

Ⅲ. Implementation of a Remote On-line

Diagnosis Service based mobile Apps

For this study, we use an On-Board

Diagnostic simulator called OBD-II simulator

(ECUsim2000)[5]. With this ECUsim2000

simulator, communication test is conducted in

the same way as an actual car was developed

and tested. The hardware architecture includes

the ECUsim 2000 OBD-II ECU simulator for

reading the performance using OBD-PIDs code

make up in the android application such as

speed, Revolutions Per Minute (RPM), Intake

Temperature, Coolant Temperature. The

proposed system architecture includes Bluetooth

communication between the ECU simulator

(ECUsim 2000 and Bluetooth interface) that

supports all OBD-II protocols and receiver

(mobile) devices․Figure 2 shows a screen shot

Figure 1. Internal structure of Node.js. the

single thread handles all incoming requests[3].

 Figure 2. Saving vehicle’s performance from web

server to mobile device

한국정보통신학회 2016 춘계종합학술대회

- 288 -

while the car owner monitors on-board

diagnostics saved on the MongoDB database.

Ⅳ. Simulation and Experimentation results

To measure the performance of different use

cases the program Apache JMeter 2.712 was

used [6]. The component under test was the

main back end server. The simulation of

client-server architecture is presented on the

Figure 3. It shows a Node.js request to write

and query data from database.

In this paper, we have considered three kind

of Client-Server Architecture that provides

backend for server-side implementation and

database layers. The first Client-Server

Architecture is that the server-side code

resides on the Node.JS web server and the

database is MongoDB[7]. The second

Client-Server Architecture is that the

server-side code resides on the Apache tomcat

server. The application server that implements

the http request is writing using JavaServer

Pages (JSP) technology [8]. JSP uses the Java

programming language. With this model, a

relational database MySQL is used as the

database. The third Client-Server Architecture

consists of Apache Tomcat on the server-side

and MongoDB database. Here, we have used

the Java API for MongoDB/BSON in Apache

Tomcat [9]. The web service functions on

Node.js would collect data from the client

system such as web service or web-based

application on smartphone. The peak load

testing scenarios state is shown in the table 1

Figure 3. Design on how request from Mobile

based application is submitted to Node.js.

Figure 4 The performance of the three model

client-server Architecture. The measurement

metrics are the throughput and response time

The Figure 4 shows the results of the three

Client-Server Architecture configuration. To

this performance, we analyze the throughput

and response time metrics. The

Node.js-JavaScript-MongoDB configuration

outperforms.

For this architecture, from 200 up to 2000

concurrent users (from 10000 to 100000

requests), the response time is high within

173ms but the throughput in comparison to the

response time is less low with 164 requests per

second. This signifies that this Client-Server

Architecture is capable enough to sustain a

large number of concurrent clients ‘requests.

The Apache Tomcat-JSP-MySQL has a higher

response time but the throughput is much

lower within 117 requests per second. This

signifies that this Client-Server Architecture is

not capable enough to execute concurrent

requests. The third model that include Apache

at server-side and MongoDB as database

outperforms less better in comparison to

#scenario Concurre
nt users

Ramp-u
p
period(s
econd)

Loop(t imes
to run the
s i m i l a r
sample)

Scenario 1 200 0 50

Scenario 2 1000 0 50

Scenario 3 2000 0 50

Table 1 Scenarios cases for experimentation

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps

- 289 -

Node.js-JavaScript-MongoDB but better than

Apache Tomcat-MySQL. Therefore, Node.JS is

roughly 40% faster, for example 164 responses

per second against 117ms for 2000 users that

corresponds to one hundred thousand (100000)

concurrent requests.

Ⅴ. Conclusions and Future Work

The Client-Server Architecture constitute of

Node.JS server side and MongoDB is 40%

faster that the Java EE solution using Apache

Tomcat at the server side with MySQL or

MongoDB database for implementing mobile

client server computing applications. In this

paper, the difference concurrency models

between single-threaded event loop Node.js and

multi-thread approach made difference. To test

Node.js a higher concurrency level-where it is

supposed to surpass multi-threading, other

problems like increasing the number of requests

occur. The reason is that Apache JMeter is a

100% pure Java application to evaluate the

functional behavior and measure performance of

the three Client-Server Architecture

configuration. We were not able to run these

tests beyond 4000 concurrent users, what

means over 200000 requests. For future work,

we will look the impact of using the node.js in

a real time remote and controlling IoT

application such as Home automation

References

[1]Radek,V.,Roman,J., “Performance of Hybrid

Mobile Application UI Frameworks”, Applied

Mathematics, Computational Science and

Engineering, pp: 293-306, 2013.

[2]Yuhao,Z.,Daniel,R.,Matthew,H.,Vijay,J.R.,

“Microarchitectural implications of event-driven

server-side web applications”, Proceedings of

the 48th International Symposium on

Microarchitecture, pp: 762-774, 2015.

[3]Benjamin,S.,S., Maude,.L., “An Inside Look

at the Architectural of NodeJS”,available on line

http://mcgill-csus.github.io/student_projects/Sub

mission2.pdf, last access, January, 2016

[4]Tilkov,S., Vinoski, S. “Node.js : Using

Javascript to Build High-Performance Network

Programs”. Internet Computing, IEEE, 2010

STRIEGEL, GRAD OS F’11, PROJECT DRAFT

6

[5]Scantool, ECUsim 2000 OBD-II ECU

s i m u l a t o r ,

https://www.scantool.net/ecusim-2000.html.

[6]Emily H,H., “Apache JMeter. A practical

beginner’s guide to automated testing and

performance measurement for your websites,

PACKTPUBLISHING,BIRMINGHAM-MUMBAI,

pp:1-138,2008

[7]Brian,K., “CS764 Project Report: Adventures

in Moodle Performance Analysis”, available on

line at

http://pages.cs.wisc.edu/~bpkroth/cs764/bpkroth_

cs764_project_report.pdf, pp:1-28,last access,

March 2016

[8]Glenn,L.N., “Tomcat Performance Tuning

and Troubleshooting”,ApacheConference,

pp:1-10,2003.

[9]Florian,H.,Rene,P., “Performance optimization

for querying social network data”,Workshop

Proceedings of the EDBT/ICDT,pp:232-239,2014.

감사의 글

 이 논문은 2016년도 한국연구재단의

지역혁신창의 인력양성사업과 Brain Bus

an 21 협력 기술개발사업의 지원을 받아

수행된 연구임을 밝힙니다.(NRF-2015H1

C1A1035898, C0249807)

