2utd 4 ofFgAelAS 7yl AF Nodejs Lol gt
EN
grol o’ - FFS
ol
An Investigation into the Applicability of Node.js as a Platform for
implementing Mobile Web Apps.
Lionel Nkenyereye™ - Jong-Wook Jang’
‘Dong-Eui University

E-mail : lionelnk82@gmail.com, jwjang@deu.ac.kr

[e]

- =
B ERME o7 mHld L= AFHTGE AL AnlEE Jue] muld glolA
Node.js stdo] vlE7] zigt, B] g, o|dE 7|vF Z2 73 JgthdS AA T 3 H o] EfH o]
22 & 4H7 MongoDBE AHg3te] App ARgAbe] o3 HEE HUid delHES At
Node.js= Z2Ia#dwr7l A HE EAE d2ste o 283 =75 AFsie AL EX=E sl
ATk AF AgAE0] seloln dFS IS R & T2 IaYPM FHS AFEE S8 =
29L& 383ty Jed, FFE o] &dte] AAO R HoHE B ¥ £ e 2nE E AH

Holx WAooz $& TS T3l AG B Fxo E3E RAFuA I

ABSTRACT

In this paper, we propose an architecture that affords mobile app based on nomadic
smartphone using not only mobile cloud computing- architecture but also a dedicated web
platform called Node.js built-in with the asynchronous, Nonblocking , Event-Driven programming
paradigm. Furthermore, the design of the proposed architecture takes document oriented database
known as MongoDB to deal with the large amount of data transmit by users of mobile web
access application. The Nodejs aims to give the programmers the tools needed to solves the
large number of concurrent connections problem. We demonstrate the effectiveness of the
proposed architecture by implementing an android application responsible of real time analysis by
using a vehicle to applications smart phones interface approach that considers the smartphones to
acts as a remote users which passes driver inputs and delivers output from external applications.

Jl9l=

Client-Server Architecture, event-driven programming, Mobile Web App, Node.js, performance

I . Introduction applications available on mobile devices[1].

one of the main challenge associated with

Mobile web App runs on mobile browser. puilding mobile application is selecting the
The browser only hosts the application appropriate architecture capable enough to
presentation layer that is designed using support a large and increasing number of
HTMLS. For entreprises, a incommensurate clients requests handled by a Client-Server
large portion for mobile applications is based architecture simultaneously. However, web
on making existing desktop or web-based server based on the thread-based approach

- 286 —

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps

might perform inefficiently as the number of
incoming network requests increases. That is
the reason that many industry such as eBay,
LinkedIn have started to adopt event-driven
programming as an option to respond to a

large number of concurrent requests and
achieve scalability more operationally [2].
The main contribution of this work is to

investigate the performance of Client-Server
Architecture that includes backend server, web
programming framework and database able to
large and

support a increasing number of

concurrent clients’ requests. The performance
metrics are throughput, response time and error
rate to compare web applications developed

using JavaScript and JavaServelet.

I1. Node.js platform for concurent
connections

One of the of Nodejs
thread-based framework is that Nodejs has a
built-in

non-blocking model [4]. The second advantage

advantage over

single-thread event loop and

is that Nodejs allows event-driven paradigm.

This event-driven paradigm is the key on
which Node.js

constructed. Node.js features the event-handler

interactive applications are

that creates events and the main loop executes

Node.js

node library

node bindings

(http, sockets...)
-
va ThreadIEvem Ioo{ DNS IC rypto
(libelo) (libev) | (C-ares) |(OpenSSL
A
Figure 1. Internal structure of Node.js. the

single thread handles all incoming requests[3].

the appropriate event. The event handlers in

Node.js are known as callback functions.

Therefore, callback functions are eventually

executed when the non-blocking operation

completes. So, when the event loop in Node.js

receives the completion feedback, it executes
the callbacks.

The figure 1 shows the model structure of
[3]. At the core of
Node.js, we have the event loop running in a
This

looks

the Nodejs platform
single process and in infinite manner.
that the event
continually at what events have submitted and
what callbacks

architecture ascribes Nodejs a high level of

means, loop concepts

need to be executed. This

concurrency and therefore higher overall

throughput.

Ill. Implementation of a Remote On-line
Diagnosis Service based mobile Apps

For this
Diagnostic simulator called OBD-II simulator
(ECUsim2000)[5]. With this ECUsim2000

simulator, communication test is conducted in

study, we use an On-Board

the same way as an actual car was developed
and tested. The hardware architecture includes
the ECUsim 2000 OBD-II ECU simulator for
reading the performance using OBD-PIDs code

make up in the android application such as

e Spee.
5. 07-20 11:45:50
air flow rate

A0S0 toramas252 >
2015-07-20 11:45:50

coolant temperature
- C)
—O7- 20 11:45:50

104<704<T04<T04<TN A< TN A< TN < 700 IS

Figure 2. Saving vehicle’s performance from web

server to mobile device

speed, Revolutions Per Minute (RPM),

Temperature,

Intake
The
proposed system architecture includes Bluetooth
ECU simulator
interface) that
OBD-II protocols and receiver

Coolant Temperature.
communication between the
(ECUsim 2000 and Bluetooth
supports all

(mobile) devices - Figure 2 shows a screen shot

- 287 —

SIEHHEAISHS| 2016 EASEISHAHE]

the monitors on-board

diagnostics saved on the MongoDB database.

while car owner

IV. Simulation and Experimentation results

To measure the performance of different use
cases the program Apache JMeter 2.712 was
used [6]. The component under test was the
The

client-server architecture is presented on the

main back end server. simulation of
Figure 3. It shows a Node.js request to write
and query data from database.

In this paper, we have considered three kind
that

implementation and

of Client-Server Architecture provides
backend for

database

server-side
The
that the
resides on the Node.JS web server and the
MongoDB[7]. The second
Architecture is that the

server-side code resides on the Apache tomcat

layers. first Client-Server

Architecture is server-side code
database is

Client-Server

server. The application server that implements
the http request is writing using JavaServer
Pages (JSP) technology [8]. JSP uses the Java
programming language. With this
database MySQL
database. The third Client-Server Architecture

consists of Apache Tomcat on the server-side

model, a

relational is used as the

and MongoDB database. Here, we have used
the Java API for MongoDB/BSON in Apache
Tomcat [9]. The
Node.js would collect data from the -client

web service functions on

system such as web service or web-based
The load

testing scenarios state is shown in the table 1

application on smartphone. peak

todajs —
| [—
1| SegeThread
1.HTTP !
— —¥ | —=ila—
—— Request : o Dbz
4 Regonsan Wieb Sarver —_ —
le— JSONbma — Daausy |
[—

Figure 3. Design on how request from Mobile
based application is submitted to Node.js.

Table 1 Scenarios cases for experimentation

#scenario Concurre | Ramp-u | Loop(times
nt users p to run the
period(s |[similar
econd) sample)
Scenario 1 | 200 0 50
Scenario 2 | 1000 0 50
Scenario 3 | 2000 0 50

RESPONSE TIME-THROUGHPUT FOR
MODEL-VIEW-CONTROLLER
ARCHITECTURE

MS

IME IN
f
|

Node ApacheTom
cat-Jsp
Mysql

AVERAGE RESPONSE T

164 117.4 18,9

Figure 4 The performance of the three model
The
metrics are the throughput and response time

client-server Architecture. measurement

The Figure 4 shows the results of the three

Client-Server Architecture configuration. To
this performance, we analyze the throughput
The

configuration

and response time metrics.
Node.js-JavaScript-MongoDB
outperforms.

For this architecture, from 200 up to 2000
10000 to 100000

the response time 1is high within

concurrent users (from
requests),
173ms but the throughput in comparison to the
response time is less low with 164 requests per
second. This signifies that this Client-Server
Architecture is capable enough to sustain a
large number of concurrent clients ‘equests.
The Apache Tomcat-JSP-MySQL has a higher
response time but the throughput is much
lower within 117 requests per second. This
signifies that this Client-Server Architecture is
not capable enough to execute concurrent
requests. The third model that include Apache
and MongoDB as

less

at server-side database

outperforms better in comparison to

— 288 —

An Investigation into the Applicability of Node.js as a Platform for implementing Mobile Web Apps

Node.js—JavaScript-MongoDB but better than
Apache Tomcat-MySQL. Therefore, Node.]JS is
roughly 40% faster, for example 164 responses
per second against 117ms for 2000 users that
corresponds to one hundred thousand (100000)

concurrent requests.

V. Conclusions and Future Work

The Client-Server Architecture constitute of
Node.JS is 40%
faster that the Java EE solution using Apache
Tomcat at the server side with MySQL or
MongoDB database for

client server computing applications.

server side and MongoDB

implementing mobile
In this
paper, the difference concurrency models
between single-threaded event loop Node.js and
multi-thread approach made difference. To test
Node.js a higher concurrency level-where it is
supposed to surpass multi-threading, other
problems like increasing the number of requests
occur. The reason is that Apache JMeter is a
100%
functional behavior and measure performance of

the three

pure Java application to evaluate the
Client-Server Architecture
configuration. We were not able to run these
beyond 4000 what

means over 200000 requests. For future work,

tests concurrent users,

we will look the impact of using the node.js in

a real time remote and controlling IoT

application such as Home automation

gk A - A o
A9 e Y AdAY # Brain Bus
1 99 7lsMEAde] AdS ot
FEE d7dS B Y (NRF-2015H1
C1A1035898, C0249807)

References

[1]Radek,V.Roman,]., “Performance of Hybrid
Applied
Science and

Mobile Application Ul Frameworks”,
Mathematics, Computational
Engineering, pp: 293-306, 2013.
[2]Yuhao,Z.,Daniel,R.,Matthew,H.,Vijay,].R.,
“Microarchitectural implications of event-driven
server-side web applications”, Proceedings of
the 48th Symposium on
Microarchitecture, pp: 762-774, 2015.

[3]Benjamin,S.,S., Maude, L., “An Inside Look
at the Architectural of NodeJS” available on line

http://mcgill-csus.github.io/student_projects/Sub

International

mission2.pdf, last access, January, 2016

[4]Tilkov,S., Vinoski, S. “Node.js Using
Javascript to Build High-Performance Network
Programs”. Internet Computing, IEEE, 2010

STRIEGEL, GRAD OS F’11, PROJECT DRAFT
6

[5]Scantool, ECUsim 2000 OBD-II ECU
S 1 m u 1 a t 0 r ,
https://www.scantool.net/ecusim-2000.html.
[6]Emily HH. “Apache JMeter. A practical
beginner’s guide to automated testing and
performance measurement for your websites,
PACKTPUBLISHING,BIRMINGHAM-MUMBAI,
pp:1-138,2008

[7]Brian,K., “CS764 Project Report: Adventures

in Moodle Performance Analysis”, available on

line at
http://pages.cs.wisc.edu/ bpkroth/cs764/bpkroth_
cs764_project_report.pdf, pp:1-28last access,
March 2016

[8]Glenn,L.N., “Tomcat Performance Tuning
and Troubleshooting”,ApacheConference,
pp:1-10,2003.

[9]Florian,H.,Rene,P., “Performance optimization

for querying social network data”,Workshop

Proceedings of the EDBT/ICDT,pp:232-239,2014.

- 289 -

