PI5) 제주도 지하수 내 바나듐의 농도 분포 및 산출 특성

현익현 · 윤성택¹⁾ · 김호림¹⁾ · 감상규²⁾

제주특별자치도 보건환경연구원, $^{1)}$ 고려대학교 지구환경과학과 및 KU-KIST 그린스쿨대학원, $^{2)}$ 제주대학교 환경공학과

1. 서론

바나듐(V)은 인체를 구성하는 기본 원소 중의 하나로서, 적정량 섭취하게 되면 당뇨병, 심장질환 및 동맥경화 예방효과를 기대할 수 있다. 적정 농도의 용존 바나듐이 함유된 지하수를 물산업 측면에서 효과적으로 이용하기 위해서는 바나듐의 기원과 농도를 조절하는 지질 및 지화학적 요인에 대한 이해를 바탕으로 적정한 개발지침이 확립되어야 한다. 이에, 본 연구는 제주도 화산암반 지하수에서의 바나듐의 시공간적 농도 분포 특성 및 지질, 지화학적 조절 요인을 파악하여 바나듐의 산출 특성을 평가하고자 수행되었다.

2. 재료 및 방법

제주도 지하수의 수질특성을 전반적으로 파악하기 위하여 제주보건환경연구원에서는 2008년부터 지역별로 대표성이 있는 지점을 선정하여 매년 3회(3, 7, 10월)에 걸쳐 정기적인 지하수 채취 및 분석을 수행하여왔다. 본 연구에서는 2008-2014년 동안의 수질분석 자료(총 2,595건)를 수집하여 분석하였다. 아울리, 바나듐의 산출 특성을 보다 자세히 평가하기 위하여 2006년 12월부터 2008년 6월에 걸쳐 총 6회에 걸쳐 채수 및 분석한 정밀조사 자료(총 258건)도 해석에 활용하였다.

3. 결과 및 고찰

2011-2015년 중 매년 채수된 제주 전역 지하수(n=2,595)의 분석결과를 살펴 보면, pH는 $6.1 \sim 9.3$ 의 범위 (평균값 7.7)로서 전반적으로 물-암석반응에 의해 조절되는 지하수의 수질특성을 나타내고 있다. 양이온의 경우 평균값으로 보면 $Na^+ > Ca^{+2} > Mg^{+2} > K^+$ 의 순서이며, 음이온의 경우 $HCO_3 > CI > SO_4^2 > NO_3$ -N의 순으로 나타났다. 물-암석 반응의 지표로 자주 사용되는 HCO_3 의 농도는 지역별로 차이를 나타내었다. 마찬 가지로, 인위 오염의 지표로 활용되는 질산성질소와 염소이온의 농도도 지점별로 변화가 크게 나타났다. 정 밀조사 지하수의 수질 유형은 $Na-Ca-Mg-HCO_3$ 유형, $Na-Mg-HCO_3$ 유형, $Na-HCO_3$ 유형 등으로 매우 다양하다.

제주 전 지역 지하수 중의 용존 바나듐의 농도는 최소 $0.2~\mu g/L$ 에서 최대 $71.0~\mu g/L$ 의 넓은 범위를 나타 냈으며, 평균 농도는 $12.0~\mu g/L$ 이고 중앙값은 $9.9~\mu g/L$ 로 산출되었다. 이는 Song et al.(2009)이 보고한 바나듐 함량 자료(범위 $1.4\sim52.8~\mu g/L$)와 대체로 일치하며, 미검출이거나 미량의 바나듐이 산출되는 국내 타 지역 지하수에 비해 현저히 높은 농도 수준이다.

지하수환경에서의 바나듐의 기원과 거동에 관한 평가를 위해 주요 용존이온 및 미량원소와의 상관성 분석을 수행하였다. 바나듐과 주요 이온성분과의 상관관계를 보면, pH와 가장 높은 양(+)의 상관성을 가지며 (0.558), 또한 Cl̄, Na⁺, K⁺와도 유의성 있는(p<0.05) 상관성을 나타내었다(상관계수는 >0.2). 반면에 질산성질 소와는 유의성 있는(p<0.05) 음의 상관성(-0.192)을 나타냈다.

조사된 지하수의 수질유형별로 바나듐의 농도 분포를 평가한 결과, 대체적으로 Na-Ca-HCO₃, Na-Mg-HCO₃, Na-HCO₃ 유형을 띄는 지하수에서 고농도의 바나듐이 산출됨을 알 수 있다. 반면, 대표적인 인위 오염물질인 Cl과 질산성질소의 농도가 높은 Na-Ca-NO₃(Cl) 유형의 지하수에서는 바나듐의 농도가 현저히 낮아진다.

4. 참고문헌

Song, Y. C., Oh, S. S., Hyun, I. H., Oh, T. G., Kim, S. M., 2009, Distribution of vital mineral groundwater, Report of Jeju Special Self-Governing Provincial Environmental Resources Institute, 2, 254-267.