이기) 죽여 추출물을 이용한 금 나노 입자의 합성 및 특성

박진오¹⁾ · 박근태^{1,2)}

1)부산대학교 나노과학기술대학 나노융합기술학과, ²⁾부산대학교 BIT 융합기술 연구소

1. 서론

21세기로 접어들면서 급속도로 발전하고 있는 첨단기술 중의 하나가 미세구조를 다루는 나노기술이다. 이러한 나노기술은 고령화 사회로 접어들고 있는 현시점에서 여러 분야 중 바이오 분야에 대한 연구가 활발하게 진행되고 있다. 나노물질은 일반물질과는 다른 독특한 기본적인 성질뿐만 아니라 여러 가지 특이적인 성질들을 가지고 있기 때문에 이러한 물질을 이용한 의약품 및 의료기기의 개발이 가능해졌고 또한, 질병을 진단하고 치료하는 범위가 확대되고 있다.

바이오 분야와 나노기술의 융합과 응용은 나노 바이오 기술로 지칭하여 하나의 큰 연구범위를 확보하고 많은 연구가 진행되고 있다. 나노 바이오 분야에서도 사용되는 소재 중에 많은 연구 개발이 진행 중인 것 중의 하나가 금 나노 입자이다. 금 나노 입자는 일반적으로 화학 물질을 환원제로 사용하여 화학적 방법에 의해 합성된다. 화학적 합성에 의해 만들어진 금 나노 입자는 제조 공정상의 화학 물질에 의한 독성은 피할 수없기 때문에 인체에 무해한 무독성의 환원제를 사용한 친환경적인 방법이 필요하다. 따라서 본 연구에서는 여러 가지 천연물 중에 해열 작용, 항염증 작용, 항암 작용, 진해 작용 등의 효능을 가진 것으로 알려진 대나무 속껍질, 즉, 죽여(Bambusae Caulis in Taeniam)를 사용하여 금 나노 입자를 합성하는 방법을 제시하였다. 또한, 합성된 금 나노 입자가 가지는 특성 및 금 나노 입자의 농도에 따른 항산화능에 대해 연구하였다.

2. 자료 및 방법

실험에 사용한 금 나노 입자는 환원제인 죽여 추출물에 의한 금 이온의 환원을 통해 얻을 수 있었다. 합성한 금 나노 입자를 UV-visible spectrophotometer, Zetasizer, HR-TEM, XRD, FTIR을 통해 특성 분석 하였고, DPPH assay와 ABTS assay를 통해 항산화능을 분석하였다. 더 나아가, Heme Oxygenase 1의 발현 효과를 알아봄으로써 금 나노 입자의 항산화능을 측정하였다.

3. 결과 및 고찰

연구 결과 죽여 추출물을 사용해 친환경적인 방법으로 금 나노 입자 합성에 성공하였고, 여러 가지 측정 기구로 입자를 확인하였다. 또한, 항산화능 측정 결과 금 나노 입자의 농도 의존적으로 항산화능이 증가되어 짐을 확인할 수 있었다. 이 연구 방법은 친환경적인 방법으로 시행되었기 때문에 다양한 응용분야에 적용될 것으로 보여지며, 항산화 효과를 살려 다양한 항산화 연구의 기초 자료로써 활용될 것으로 여겨진다.

4. 참고문헌

Ahmed, S., Ikram, S., Yudha, S. S., 2016, Biosynthesis of gold nanoparticles: A green approach, Journal of Photochemistry and Photobiology B: Biology, 161, 141-153.

G. S, Jha PK, V. V, et al., 2016, Cannonball fruit (couroupita guianensis, aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity, Journal of Molecular Liquids, 215, 229-236.