methods for the minimization of off-axis aberrations and for the operation in wider spectral range. We also conduct ray tracing and optimize the whole optical system with commercial software. Finally we present the design parameters of a telescope with an aperture of 0.5 to 1 meters, enabling diffraction limited operation for a moderate field of view about 10 arc-minutes.

[구 AT-02] K-GMT Science Program in 2016 and Future Prospect

Narae Hwang, Minjin Kim, Jae-Joon Lee, Hwihyun Kim, Ho-Gyu Lee, Soung-Chul Yang, Byeong-Gon Park

K-GMT Science Program, operated by Center for Large Telescopes (CILAT) in Korea Astronomy and Space Science Institute (KASI), aims to promote the scientific researches by providing the access to the observational facilities such as 4-8m class telescopes and specialized instruments. In 2016, we plan to make various instruments with MMT and Gemini Observatory as well as IGRINS with 2.7m HJS Telescope in McDonald Observatory available to Korean Astronomical Community. We will present the current status and future prospect as well as some early results made from the K-GMT Science Program in past years.

[구 AT-03] Status Report of the NISS and SPHEREx Missions

Woong-Seob Jeong1,2, Sung-Joon Park1, Dongkon Moon1, Dae-Hee Lee1, Won-Kee Park1, Duk-Hang Lee1,2, Kyeongyeon Ko1,2, Leonghyun Pyo1, II-Joong Kim1, Youngsik Park1, Ukwon Nam1, Minjin Kim1,2, Jongwan Ko1, Myungshin Im1, Hyung Mok Lee1, Jeong-Eun Lee1, Goo-Hwan Shin1, Jangsoo Chae1, Yoshio Kawaguchi1,2,3,4,5,6, NISS Team1,2,3,4,5,6,7, SPHEREx Korean Consortium1,2,3,4,5,6,7

1Korea Astronomy and Space Science Institute, Korea, 2University of Science and Technology, Korea, 3Seoul National University, Korea, 4Kyung Hee University, Korea, 5Satellite Technology & Research Center, KAIST, Korea, 6ISAS/JAXA, Japan, 7Korea Institute for Advanced Study, Korea

The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy with the Field of View of 2 x 2 deg. in the near-infrared range from 0.9 to 3.8μm is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. The Flight Model of the NISS is being developed and tested. After an integration into NEXTSat-1, it will be tested under the space environment. The NISS will be launched in 2017 and it will be operated during 2 years.

As an extension of the NISS, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA SMEX (SMall EXploration) mission proposed together with KASI (PI Institute: Caltech). It will perform an all-sky near-infrared spectral survey to probe the origin of our Universe: explore the origin and evolution of galaxies, and explore whether planets around other stars could harbor life. The SPHEREx is designed to have wider FoV of 3.5 x 7 deg. as well as wider spectral range from 0.7 to 4.8μm. After passing the first selection process, SPHEREx is under the Phase-A study. The final selection will be made in the end of 2016.

Here, we report the current status of the NISS and SPHEREx missions.

[구 AT-04] The East-Asian VLBI Network: Recent Progress and Results of the First Imaging Test Observation

Kiyohito Wajima1, Duk-Gyoo Roh (노덕규)1, Se-Jin Oh (오재진)1, Jongsoo Kim (김종수)1, Yoshiaki Hagiwara2, Kazuhiro Hada3, Noriyuki Kawaguchi1, Hideyuki Kobayashi1, Yuanwei Wu1, Kenta Fujisawa4, Tao An5, Willem A. Baan6, Wu Jiang7, Zhi-Qiang Shen7, Bo Xia7, Ming Zhang7, Longfei Hao7, Min Wang7

1Korea Astronomy and Space Science Institute (한국천문연구원), 2Toyo University, 3National Astronomical Observatory of Japan, 4Yamaguchi University, 5Shanghai Astronomical Observatory, 6Xinjiang Astronomical Observatory, 7Yunnan Astronomical Observatory

동아시아 VLBI 관측망은 한·중·일 각국의 진파망원경을 통합해서 구성되는 동아시아 지역의 새로운 VLBI 관측망이다. EAVN의 주관 관측주파수는 6.7, 8, 22, 43 GHz이고 최고 공간분해능은 약 0.5 mas이다. 우리는 EAVN의 성능 검증을 목적으로 하는 국제연구팀을 구성하고 2013년부터 2015년까지 주로 8, 22 GHz로의 프렌지검출 관측만을 수행하였다. 이들의 결과에 의해서 작년말부터 앞으로의 EAVN 어레이 공개를 목표로 할 영상합성 시험관측을 시작하였다. 첫 번째 시험관측은 한·중·일 9개의 안테나를