들을 선별하여 표준패러다임(뉴턴역학과 암흑물질)과 MOND 하에서 속도분산 운동에 대한 모델링을 수행하였다. 속도분산 anisotropy에 대한 parametric 모형을 가정하고 다음의 결과를 얻었다. (1) anisotropy가 속도분산 운동에 큰 영향을 준다는 것을 확인하였고, (2) 전체적으로 표준패러다임과 MOND 중 어느 패러다임이 관측된 속도분산 운동에 더 잘 부합하는지 결론을 도출하기가 어려웠고, (3) 은하 개별적으로는 표준패러다임 하에서 요구되는 암흑물질의 양이 달랐고, 선호되는 MOND 모형에서도 미세한 차이가 나타나는 것으로 보였다. 이 결과는 anisotropy에 대한 더 나은 이해를 바탕으로 개선될 수 있을 것이다.

[포 GC-26] Cosmic Web traced by ELGs and LRGs from the Multidark Simulation

Doyle Kim(김도일) and Graziano Rossi
Department of Astronomy and Space Science, Sejong University, Seoul, 143-747, Korea

Current and planned large-volume surveys such as the Sloan Digital Sky Survey extended Baryon Oscillation Spectroscopic Survey (SDSS IV-eBOSS) or the Dark Energy Spectroscopic Instrument (DESI) will use Luminous Red Galaxies (LRGs) and Emission Line Galaxies (ELGs) to map the cosmic web up to z~1.7, and will allow one to accurately constrain cosmological models and obtain crucial information on the nature of dark energy and the expansion history of the Universe in novel epochs - particularly by measuring the Baryon Acoustic Oscillation (BAO) feature with improved accuracy. To this end, we present here a study of the spatial distribution and clustering of a sample of LRGs and ELGs obtained from a sub-volume of the MultiDark simulation complemented by different semi-analytic prescriptions, and investigate how these two different populations trace the cosmic web at different redshift intervals - along with their synergy. This is the first step towards the interpretation of upcoming ELG and LRG data.

[포 GC-27] Properties of High- and Low-Redshift Quasars from the extended Baryon Oscillation Spectroscopic Survey

Doohyun Choi and Graziano Rossi
Sejong University

The SDSS-IV extended Baryon Oscillation Spectroscopic (eBOSS) will provide new photometry and spectroscopy of an unprecedented number of quasars in a novel redshift range, along with some re-observations of SDSS DR12 objects. We present here an observational study of the geometry, spatial distribution, luminosity function, and clustering of a sample of low- and high-z quasars obtained from the first SDSS-IV data release (DR13). In particular, we characterize the amount of overlapping between different data releases, and then focus on the synergy among high- and low-z quasars as tracers of the cosmic web, particularly considering their cross-correlations and cosmological implications.

[포 IM-01] Kinematics of the Envelope and Two Bipolar Jets in L1157

Woojin Kwon (권우진)1, Manuel Fernandez-Lopez2, Ian W. Stephens3, and Leslie W. Looney4
1Korea Astronomy and Space Science Institute (한국천문연구원), 2Instituto Argentino de Radioastronomia, 3Boston University, 4University of Illinois at Urbana-Champaign

A massive envelope and a strong bipolar outflow are the two most distinct structures of youngest protostellar systems. We present observational results from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward the youngest (Class 0) protostellar system L1157. At an angular resolution of 5 arcseconds, we mapped its well-developed outflow in CO 2-1 over a span of approximately 5 arcminutes. Additionally, we imaged the central envelope with CO isotopes, CS, CN, and N2H+ with an angular resolution of about 2 arcseconds. We show that the bipolar outflow may be represented with a two jet model and constrain its physical properties such as precession/rotation directions, velocities, inclinations, and position angles via cube data fitting. In addition, we discuss the kinematic features of the envelope detected in CO isotopes and N2H+ and present the radius-dependent dust opacity spectral index.

[포 IM-02] The Propagation of Cosmic Ray in Protoplanetary Disks

Soonyoung Roh1,2, Yuri I. Fujii3, Shu-ichiro Inutsuka3, Takeru Suzuki3, and Munetake Momose4
1Department of Physics, School of Natural Sciences, UNIST, Korea, 2Niels Bohr International Academy, Denmark, 3Department of Physics, Graduate School of Science, Nagoya University, Japan, 4College of Science, Ibaraki University, Japan