Effects of iron atom, substrate on two-dimensional C2N crystals

  • Published : 2016.03.22

Abstract

Recently, there has been a lot of researches related to two-dimensional (2D) materials due to their new properties and applications emerging upon 2D confinement. A new type of graphene like two-dimensional layer material, nitrogenated holey two-dimensional structure C2N-h2D, that is possession of evenly distributed holes and nitrogen atoms with proper bandgap has been synthesized. Previous calculation studies already have shown that the variance of the orbital interaction, band structure of few-layer C2N-h2D suggests that interlayer coupling does play an important role in its electronic properties. In this point, using first-principles density functional theory calculation, we here explore the effect of porous embedded iron atom and iron substrate on encapsulated few layer C2N-h2D. We show the atomic structures and the corresponding electronic structures of Fe@C2N to elucidate the effect of iron. Finally, this study demonstrates that embedded iron C2N has AA-stacking as most favorable stacked structure in contrast to pure C2N. In addition, iron substrate modifies its encapsulated C2N from semi-metallic states to metallic state.

Keywords