
ABSTRACT

Flooded lead acid batteries are still very popular in the 
industry because of their low cost as compared to their 
counterparts. State of Charge (SOC) estimation is of great 
importance for a flooded lead acid battery to ensure its safe 
working and to prevent it from over-charging or over-discharging. 
Different types of Kalman Filters are widely used for SOC 
estimation of batteries. The values of process and measurement 
noise covariance of a filter are usually calculated by trial and 
error method and taken as constant throughout the estimation 
process. While in practical cases, these values can vary as well 
depending upon the dynamics of the system. Therefore an 
Adaptive Unscented Kalman Filter (AUKF) is introduced in 
which the values of the process and measurement noise
covariance are updated in each iteration based on the residual 
system error. A comparison of traditional and Adaptive
Unscented Kalman Filter is presented in the paper. The results 
show that SOC estimation error by the proposed method is 
further reduced by 3 % as compared to traditional Unscented 
Kalman Filter.

Index Terms – Flooded Battery, State of Charge Estimation,

Adaptive Unscented Kalman Filter.

1. Introduction
There are different types of batteries available in the market 

such as Li-Ion, Lead-Acid and Nickel-Cadmium etc. Among the 
lead acid batteries, flooded batteries are also widely used due to
their low cost and long life[1]. The flooded batteries are available 
in both serviceable and maintenance free styles. A battery 
management system is vital for flooded lead acid batteries to 
maximize their performance, ensure their safety and extend their 
life span. The state of charge (SOC) estimation of a battery is 
one of the fundamental requirements of the battery management 
system. Different approaches have been proposed to predict the 
battery SOC but the most widely accepted algorithm is by using 
Kalman Filter. To make the estimation more accurate different 
types of Kalman Filters (KF) are developed and used previously. 
One of the refined form is Unscented Kalman Filter. All the 
Kalman Filter uses values for Gaussian noises which are 
calculated based on trial and error method for any particular 
system. Usually in traditional KF systems these values remain 
constant throughout the estimation operation. It has been 
analyzed that these values can vary practically because of the 
certain changing parameters in a nonlinear system. Therefore 
there is a need to update the values of such noises depending
upon the dynamics of the system[2].  

In this research, an Adaptive Unscented Kalman Filter 
(AUKF) is proposed for SOC estimation of flooded lead acid 
battery. The overall working of AUKF is similar to UKF except 
that the process noise and the measurement noise are adaptively 
updated in each iteration based on the residual system error of 
the system. So as the dynamics of the system changes due to 
external factors then the system also changes the gain of the 
filter by adjusting the noise covariance matrices. A comparison 
of traditional UKF and adaptive UKF is presented and results 

are plotted together which shows that AUKF is better in terms 
of estimation accuracy and convergence to the right value. 

2. Battery Modeling
Fig. 1 represents the selected model for flooded lead acid 
battery. It consists of Open Circuit Voltage (OCV) connecting 
in serial with an internal resistance Ri and a RC parallel branch 
of a charge transfer resistance Rtc and a double layer capacitance 
Cdl  The hysteresis and diffusion effects are directly included in 
the OCV and the procedure to model them is described in our 
previous work[3].The parameters of the battery are estimated 
online by using ARX algorithm[3]. 

Fig. 1 Selected model for the lead-acid battery

3. SOC Estimation using AUKF
      2.1 Implementation of Unscented Kalman Filter

   The UKF computing procedure for the nonlinear discrete-time 
system is given as follows:
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Observation Transformation:
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Measurement Update:
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3.2 Adaptive Unscented Kalman Filter

The process noise Qw and the measurement noise Rv are used 
in Eqs. (8) & (11) and plays an important role in the calculation 
of Kalman gain. For traditional UKF, both Qw and Rv are taken as 
constant by finding their values by trail and error method. In 
AUKF, both Qw and Rv are adaptively updated in each iteration 
based on the residual system error and are calculated as:
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Here ei is the residual error of the system at time step i and L
represents the window size of the covariance matching.
For a battery system, state space equation for the AUKF can be 
given as:
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                        k Cdl,k i k kV =OCV-V -R I +v                        (20)                                                   

The detail of the battery model, hysteresis modeling, diffusion 
modeling and above equations can be found in our previous 
work[4].  

4. Experimental Setup and Evaluation
For experimentation, a 90Ah, 12V sealed flooded lead acid 

battery from Sebang Company is used. The battery is placed in a 
temperature chamber to maintain its temperature at 25C̊. To 
verify the proposed algorithm a random current profile is applied 
on the battery as shown in the Fig. 2. In the applied current 
profile, the SOC of the battery varies from 100 % to about 50% 
and it also has both charging & discharging regimes so that 
hysteresis modeling can also be verified as lead acid batteries 
have a significant hysteresis phenomenon. A Labview program 
controls the output of a bipolar DC supply and also records the 
voltage and current of the battery by a sensing circuit and data 
acquisition device from National Instruments. At start the 
initialization of estimated SOC was 50 % instead of 100 % to 
verify the convergence of the estimated SOC to the true SOC 
value.

        

Fig. 2 Random charge/discharge current applied on the battery

Fig. 3 shows the comparison of SOC estimation by traditional 
UKF and adaptive UKF. For traditional UKF, both Rv and Qw are 
taken as constant throughout the estimation process as shown in 

Table 1 while AUKF adaptively updates both Rv and Qw

depending upon the residual voltage error of the model. The SOC 
estimation result shows that the AUKF is fast in terms of 
convergence to the right value. The adaptive UKF takes about 
half time to converge to the right SOC as compared to traditional 
UKF. After converging to the right SOC, the dynamics of the 
AUKF slows down due to which its SOC error is quite smaller 
than that of traditional UKF. 

Table 1 Values of different Parameters for traditional UKF
Parameter Value

Qw
1E-9 0

0 1E-9
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Po 1E-5 0
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Rv 0.05

Fig. 3 Comparison of SOC estimation results by traditional and 

Adaptive Unscented Kalman Filters

The maximum SOC estimation errors by traditional and 
adaptive UKF are 5% and 2 % respectively. So, SOC error is 
further reduced by 3 % in AUKF as compared to traditional UKF. 
The results indicates that adaptive adjusting covariance values of 
measurement and process noise is highly beneficial to the 
enhancement of the SOC estimation accuracy.

5. Conclusion

This work proposed an adaptive UKF algorithm for the SOC 
estimation of a flooded lead acid battery. The obtained results 
reveal that the proposed AUKF has better performance in terms 
of convergence time to the right value and SOC estimation error. 
The proposed adaptive UKF algorithm has reduced the SOC 
estimation error by 3 % as compared to traditional UKF 
algorithm.
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