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ABSTRACT

The relationship of widely used Open circuit Voltage (OCV) 
versus State of Charge (SOC) is critical for any reliable SOC 
estimation technique. However, the hysteresis existing in all type 
of battery which has been come to the market leads this 
relationship to a complicated one, especially in Lithium Iron 
Phosphate (LiFePO4) battery. An accurate model for hysteresis 
phenomenon is essential for a reliable SOC identification. This 
paper aims to investigate and propose a method for hysteresis 
modeling. The SOC estimation is done by using Extended 
Kalman Filter (EKF), the parameter of the battery is modeled by 
Auto Regressive Exogenous (ARX) and estimated by using 
Recursive Least Square (RLS) filter to tract each element of the 
parameter of the model.

1. Introduction
Due to potentially low cost, high performance in term of higher 

power density as compared to other types of battery, LiFePO4

batteries have a significant growth in use of energy storage 
systems of the plug-in hybrid electric vehicle (PHEVs), hybrid 
electric vehicle (HEVs) and electric vehicle (EVs). However, 
LiFePO4 batteries also produce hysteresis as a special OCV 
characteristic, the cell OCV during charge is different from OCV 
during discharge at the same SOC. In addition, a flat OCV in 
range from 20% SOC to 80% SOC complicates and gives 
significant influence on SOC estimation accuracy. This 
hysteresis phenomenon needs to be considered for an accurate 
battery modeling. Obtaining an effective model will strengthen 
the SOC estimation instead ignoring or using weak model will 
give less accuracy or even diverge the estimation error. In this 
paper, firstly presents discontinuous current test for 10000 mAh 
battery to gain the SOC-OCV relation as well as determine the 
hysteresis behavior of this type of battery. Secondly, following 
the idea of major loop and minor loops, the hysteresis model was 
developed based on minor loops as detailed as possible to 
strengthen the accuracy. Finally, the battery is undergoing tests
and the actual SOC of the battery is estimated by the 
combination of the Recursive Least Square (RLS) for parameter 
identification and EKF considering the hysteresis phenomenon 
which is mostly focused on.

2. Battery modeling

Equivalent circuit model (ECM) consists of a resistor and 
parallel R-C networks connected in series is commonly selected 

model. It can be identify that two R-C networks is reasonable for 
battery dynamic modeling including the voltage relaxation 
voltage of the LiFePO4 which cannot be ignored. A reduced 
computation cost model using one R-C network by merging the 
second R-C network into equilibrium voltage reconstructing to a 
dynamic OCV [1]. The ECM model now is represented as Fig. 1 
in which Ri is the pure Ohmic resistance, Rp is the charge 
transfer resistance, the time constant τRC of the R-C circuit 
divided by the charge transfer resistance result in the double 
layer capacitance Cp.

Some partial cycles are applied to obtain OCV curves between 
2 boundary OCV curves. At first, the fully charged cell is 
continuously discharged to starting point of SOC (20% SOC) 
and partially charged to 40% SOC by using 10 current pulses 
with 2% ∆SOC, after that the cell is discharged with the same 
current pulses. After each pulse, the cell is leaved for 3h resting 
to achieve the steady state of the OCV as similar to the SOC-
OCV test previously. Then, the test is repeated 3 times at 
different starting point and range of SOC (40% to 60%, 70% to 
90%, 30% to 60%) to verify the behavior. A method is developed 
to reconstruct the OCV transition which is caused by hysteresis 
effect. This method introduces α and β as 2 hysteresis factor and 
∆ as stepping SOC in Fig 2. Fig 2 shows how the method work 
based on α, β and ∆. ∆SOC increases from 0 to ∆n when the 
battery is charged, in the opposite side, ∆SOC decreases from ∆n

to 0 when the battery is discharged. The variation of the OCV 
between upper boundary curve and lower boundary curve 
equivalent to α, β which represent for charge and discharge, 
respectively. Each ∆ divides α, β into small parts equally, the 
more divided the more accuracy achieved but more computation 
cost, here we use n=5, thus each step increasing of n is 4% SOC. 
α represents for charge, increases from α0=0 to αn=1 when 
charging (αn=1 if the actual OCV lies in OCV charge) and β
represents for discharge, decreases from βn=1 to β0=0 when 
discharging (βn=0 if the actual OCV lies in OCV discharge) 

Figure 2. Modeling of a hysteresis loop with a partial cycle 
test result
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Figure 1. Equivalent circuit model of LiFePO4 battery



respecting to dimension n (α0… αn and β0… βn). The equation of 
the factors corresponds to the charge throughput, so that it can be 
expressed as follow:
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Where, the OCV is a function of SOC and α respecting to the 
modeled charge region and β respecting to the modeled discharge 
region. The values of α and β are limited in range of 0 to 1 and 
obtained by current integration.

3. Online parameters estimation algorithm
As shown in Fig. 1, the parameter of the battery need to be 

tracked first so that an auto regressive exogenous (ARX) model 
is required. The transfer function G(s) of the battery impedance 
is obtained and expressed in s-domain as follows:
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By using Euler’s forward transformation method to convert 
this transfer function into discrete-time domain, we have:
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and the impedance voltage in discrete form is:
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Furthermore, to identify these parameters, impedance voltage 
Vimp should be written in a form as:

k b kimp,k k kOCV VV .q y-= = (10)

With
1 2 3k ,k ,k ,ka , a , a ;q = é ùë û 1 1k b ,k k imp ,k

I ; I ; Vy
- -

= é ùë û (11)

Where, ψk is the input vector obtained from measured input value 
including the impedance voltage which is dropped on the battery 
impedance at previous time index, Ib,k and Ib,k-1 is the measured 
battery voltage at current time index and previous time index;
respectively. To identify the parameter of the model, a wide used 
method RLS filter is introduced, which reduces computational 
cost significantly, making the RLS extremely attractive for 
online parameter identification. For a detailed algorithm, refer to 
[2], the RLS can be found in many test books and papers.

4. SOC estimation by RLS-EKF combination
The definition of the SOC commonly formulated through 

current integration, the discrete time form of the SOC can be 
represented as:
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The reconstructed OCV at each time index k based on Equations 

(10) is: Where SOCk and SOCk-1 are the SOC at time index k and 
k-1. Ib,k-1 is the working current and ∆t is the sampling time 
period. EKF is a method for system state estimation in real-time, 
the algorithm compares measured cell terminal voltage with 
estimated voltage predicted by the filter through a cell model. 
The difference between these two values leads to an adaption of 
state of the cell model. The discrete-time state equations for a 
non-linear system can be given as:
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Where xk represents the state parameters, f and h are non-linear 
system function, uk is the input, wk is the process noise vector, yk

is measurement noise vector of covariance matrices Qk and Rk, 
respectively. yk is the observed measurement signal. To apply the 
EKF on the equivalent circuit model of LiFePO4 battery in Fig 1
and the represented discrete-time formed SOC in Eq. (12), the 
state space equation and the terminal voltage observation 
equation are derived as follows:
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The computation procedure for the EKF can be applied as 
followed reference [1].

5. Experimental Verification
To verify the proposed hysteresis modeling algorithm at different
SOC regions, the battery is fully charged up to 100% SOC and 
discharged to 20% SOC. After that, the battery is undergone 
charging and discharging processes repeatedly at various SOC 
value. This type of current profile applied for battery test is 
suitable to verify the hysteresis model as compare to other 
current profile in which the magnitude of current varies greatly. 
The Ah counting method is considered as a reference for a 
comparison between the estimated value and true value. The 
EKF is used to estimate the SOC of the battery as a main goal of 
the hysteresis model for any type of battery. To verify the 
accuracy of the proposed method and the convergence of the 
EKF, 3 different initial values 60%, 90% and 100% SOC are 
used, Fig. 3 show results of the SOC estimation and the error 
between the proposed method and the Ah counting. The SOC 
error after converging does not exceed 2%. 

6. Conclusions
In this study, the hysteresis phenomenon of the LiFePO4 

battery is investigated and a hysteresis model is also proposed. 
From the proposed method, the implementation of RLS for 
parameter identification and EKF for SOC estimation has been 
done. The accuracy of estimation, time and labor for battery 
modeling are improved significantly. The obtained results reveal 
that the proposed method works accurately and it can be used for 
the BMS such as electric vehicle and energy storage applications.
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Figure 3. SOC estimation result with different initial values


