# 건설기계용 Electric Turbo Compounding System(E-TCS)의 Power Electronics System

박찬흥, 최현태 건설기계부품연구원

## Power Electronics System of E-TCS(Electric Turbo Compounding System) for Construction Equipment

Chanheung Park, Hyuntae Choi Korea Construction Equipment Technology Institute

#### **ABSTRACT**

본 논문에서는 최근 건설기계용으로 연구되고 있는 E TCS의 Power Electronics System에 대한 Topology와 제어방법을 제안한다. 디젤엔진과 같이 사용되는 E TCS는 압축기와터빈 그리고 요구되는 회전속도로 고속회전 및 발전이 가능한모터와 이를 제어하는 인버터로 구성된다. 기존의 E TCS를위한 Power Electronics System의 경우 배터리의 전압강압으로 인버터의 전류량이 증가하여 Power Electronics System 및모터의 Volume이 커지는 단점이 있으며, 특허가 존재하여 사용이 어렵다.

본 논문에서는 이와 같은 단점을 개선한 E TCS를 위한 새로운 Topology 구성 및 제어방식을 제안한다.

#### 1. 서 론

건설기계용 E TCS 기술은 그림 1과 같이 배기가스를 활용하는 기존의 Turbo Charger 기술에 Motor/Generator를 적용하여 배기가스로 버려지는 에너지를 회수하며, Turbo Lag 개선 및 엔진의 출력을 증가시키는 장점을 갖는다.

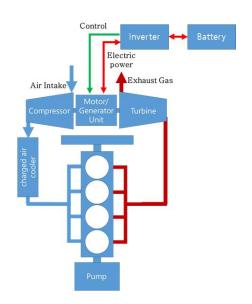



그림 1 E-TCS 구성도 Fig. 1 Block Diagram of E-TCS

하지만 터빈 및 압축기의 회전 속도가 높아 모터의 설계 및 모터 제어가 어려운 단점을 갖고 있다. 이러한 단점 중 모터제 어와 관련된 문제를 해결한 기존의 방식이 존재하지만 특허로 인해 사용이 쉽지 않으며, Topology의 특성상 전류가 증가하여 인버터 및 모터의 크기와 단가가 상승하는 문제점을 갖고 있다.

#### 2. 시스템 구성

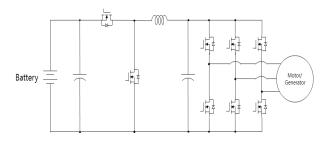



그림 2 E-TCS를 위한 기존의 Power Electronics System Fig.2 Existing Power Electronics System for E-TCS

그림 2는 E TCS를 위한 기존의 Power Electronics System 으로 Half Bridge Type의 양방향 컨버터와 3상 인버터로 구성 되어 있다. 모터의 회전자 위치각 센서로 Hall Sensor가 사용 되거나 Sensorless 방식이 적용되어 진다.[1][3][4]

그림 2의 기존 방식은 Pseudo Current Source Inverter로 BLDC의 120도 통전방식과 유사하지만 120도 구간에 1회의 스위칭만 동작하며, 실제 인버터 전류는 Half Bridge 컨버터에 의해 제어된다.[1][3][4]

하지만 이와 같은 방법은 고속의 모터 제어가 가능한 장점이 있지만 컨버터에 의한 DC Link 전압이 강압되어 상대적으로 인버터 및 모터에 공급되는 전류가 상승하는 단점을 갖게된다.

그림 3은 건설기계용 E TCS를 위해 제안하는 Power Electronics System이다. Half Bridge 컨버터의 방향이 기존과 반대로 적용되어 인버터의 DC Link 전압이 상승되는 구조이다. DC Link 전압의 상승으로 상대적으로 인버터 및 모터 전류의 감소가 가능한 장점을 갖는다.

하지만 기존 방식의 제어를 적용할 경우 모터의 회전자의 회전 속도가 저속 구간에서 제어를 할 수 없는 단점을 갖게 되 어, 제안하는 Power Electronics System을 위한 새로운 제어 시스템이 필요로 하게 된다.

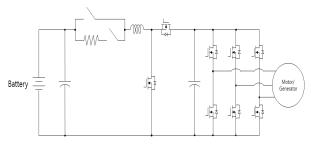



그림 3 E-TCS를 위해 제안하는 Power Electronics System Fig.3 Proposed Power Electronics System for E-TCS

#### 3. 제어기

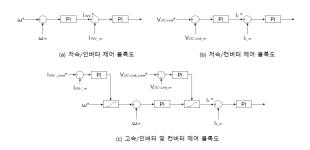



그림 4 E-TCS를 위한 Power Electronics System의 제어 알고리즘

Fig.4 Control Algorithm of Power Electronics System for E-TCS

그림 4는 제안된 E TCS를 위한 Power Electronics System 의 제어 알고리즘이다. 저속구간에서는 일반적인 BLDC와 동일한 120도 도통방식의 인버터 구동을 하며, 컨버터는 일정전압으로 승압하여 제어한다. 그리고 고속구간에서 기존의 방식과다르게 제어요소의 증가로 인버터의 전류 및 DC Link 전압에 대한 Limit 제어기가 추가되어 구성된다.

### 4. 시뮬레이션 결과

그림 5는 제안된 Power Electronic System의 Psim 시뮬레이션 회로 구성도이다. 그림 6은 시뮬레이션 결과로 제안된 제어기의 저속구간과 고속구간 사이에 전환시 발생되는 스파이크성 전류를 확인 할 수 있다. 고속구간으로 제어기 전환시 인버터의 PWM Duty가 갑작스럽게 100% On이 되어 과전류가 발생하게 된다. 그림 7은 이러한 문제점을 개선하기 위해 제어기전환시 Duty의 변화량을 제어하여 과전류 현상을 개선한 시뮬레이션 결과 파형이다.

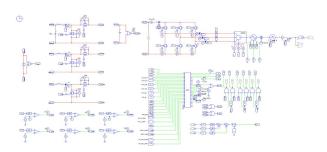



그림 5 Psim 시뮬레이션 회로도 Fig. 5 Psim Simulation Circuit

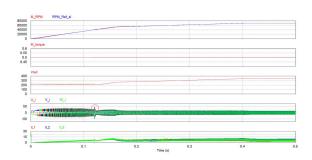



그림 6 시뮬레이션 결과(제어기 전환 알고리즘/미적용) Fig.6 Simulation Result(without Controller Mode Change Strateov)

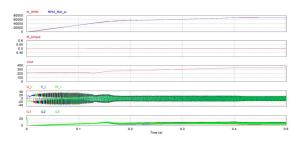



그림 7 시뮬레이션 결과(제어기 전환 알고리즘/적용) Fig. 7 Simulation Result(with Controller Mode Change Strategy)

#### 5. 결론

본 논문에서 기존 방식보다 시스템의 크기를 감소시키고 단가를 절감 할 수 있는 추가적인 장점을 갖는 건설기계용 E TCS를 위한 Power Electronics System 및 제어기를 새롭게 제안하였으며, 시뮬레이션을 통해 가능성을 검증하였다.

추후 제품 제작을 통한 테스트 및 시험 결과로 추가적인 검 증과 연구를 진행할 예정이다.

본 연구는 한국산업기술평가관리원이 지원하는 수요자 연계형 기술개발사업(10063255)의 일환으로 수행됨

#### 참 고 문 헌

- [1] Toshihiko Noguchi, "220,000 r/min, 2 kW Permanent Magnet Motor Drive for Turbocharger", Electrical Engineering in Japan, Vol. 161(3) pp. 31 40, 2007, November.
- [2] Abdul Motin Howlader, "Optimal PAM Control for a Buck Boost DC DC Converter with a Wide Speed Range of Operation for a PMSM", Journal of Power Electronics, Vol. 10, No. 5, 2010, September.
- [3] Christof Zwyssig, "Megaspeed Drive Systems: Pushing Beyond 1 Million r/min", IEEE/ASME Transactions on Mechatronics, Vol. 14, No. 5, 2009, October.
- [4] C. Zwyssig, "An Ultra High Speed, 500000 rpm, 1 kW Electrical Drive System", Power Conversion Conference Nagoya, 2007, April.