
- 575 -

Ⅰ. INTRODUCTION

Public key cryptosystems are vitals as far as

information security is concerned. RSA is the

most widely used public key algorithm[1]. RSA

requires repeated modular multiplication to

compute for modular exponentiation. Modular

multiplication with large numbers is

time-consuming. The Montgomery algorithm is

used as the core algorithm for cryptosystems

based on modular arithmetic. Montgomery

algorithm determines the quotient by replacing

저면적 RSA를 위한 효율적인 Montgomery

곱셈기 하드웨어 설계

Richard B. Nti · 류광기

한밭대학교 정보통신전문대학원

Hardware Design of Efficient Montgomery Multiplier

for Low Area RSA

Richard B. Nti · Kwangki Ryoo

Graduate School of Information and Communication, Hanbat National University

E-mail : ntiboatengrichard@gmail.com, kkryoo@hanbat.ac.kr

요 약

공개 키 암호화에서 RSA 알고리즘은 연산시간이 높은 modular 지수 연산을 사용한다. RSA의
modular 지수 연산은 반복되는 modular 곱셈을 통해 연산한다. 빠른 해독 및 암호화 속도를 가지는
높은 효율의 RSA 알고리즘을 위해 수년간 빠른 modular 곱셈 알고리즘이 연구되었다. 그러나,

Montgomery 곱셈은 추가적인 피연산자(반복 루프가 있는 3개의 피연사자)에 의해 캐리 전파 지연
이 발생되는 단점이 있다. 본 논문에서는 RSA 암호화 시스템의 가벼운 어플리케이션을 위한
Montgomery 곱셈의 면적을 줄이는 하드웨어 구조를 제안한다. 제안된 하드웨어 구조는 90nm 셀 라
이브러리 공정에서 합성한 결과 884.9MHz에서 84k 게이트 수를 가지며, 250MHz에서 56k 게이트
수를 가진다.

ABSTRACT

In public key cryptography such as RSA, modular exponentiation is the most time-consuming

operation. RSA’s modular exponentiation can be computed by repeated modular multiplication.

To attain high efficiency for RSA, fast modular multiplication algorithms have been proposed to

speed up decryption/encryption. Montgomery multiplication is limited by the carry propagation

delay from the addition of long operands. In this paper, we propose a hardware structure that

reduces the area of the Montgomery multiplication implementation for lightweight applications of

RSA. Experimental results showed that the new design can achieve higher performance and

reduce hardware area. A frequency of 884.9MHz and 250MHz were achieved with 84K and 56K

gates respectively using the 90nm technology.

키워드

Public key cryptography, RSA, modular multiplication, CSA, Montgomery multiplication

한국정보통신학회 2017 추계종합학술대회

- 576 -

the trial division by modulus with a series of

additions and shift operations[2]. However, the

three operand addition in the iteration loop

causes carry propagation. The propagation

delay influences the performance of the RSA.

To avoid the delay, several approaches have

been proposed to speed up the operation based

on carry-save addition[3-5]. In this paper, we

focus on the hardware design of efficient

Montgomery multiplier with a two-level adder.

A simplified Q_logic was designed for bit

operation which accounted for a reduction in

area.

Section II reviews radix-2 Montgomery

algorithms. We proposed an efficient design of

the Montgomery algorithm in section III. In

Section IV, we compare different Montgomery

multipliers. Finally, concluding remarks are

drawn in Section V.

Ⅱ. MODULAR MULTIPLICATION

The Montgomery multiplication is an

algorithm used to compute the product of two

integers A and B modulo N. Algorithm 1

shows the radix-2 version of the Montgomery

multiplication algorithm. Given two integers a

and b; where a, b < N (i.e. N is the k-bit

modulus), R can be defined as 2k modN where

2k-1≤ N < 2k. The N-residue of a and b with

respect to R can be defined as (1)

A = (a * R)mod N, B = (b * R) mod N (1)

Algorithm 1: Radix-2 Montgomery Multiplication
Inputs: A, B, N (modulus)

Output: S[k]

1. S[0] = 0;

2. for i = 0 to k - 1 {

3. qi = (S[i]0 + Ai * B0) mod 2;

4. S[i+1] = (S[i] + Ai * B + qi * N)/2;}

5. if(S[k] ≥N) S[k] = S[k] - N;

6. return S[k]

Based on (1), the Montgomery modular

product S of A and B can be obtained as (2)

S = (A * B * R-1)mod N (2)

where R-1 is the inverse of R modulo N, i.e.

R * R-1 = 1 (mod N). Since the convergence

range of S in Montgomery Algorithm is 0 ≤ S

< 2N, an additional operation S = S – N is

required to remove the oversized residue if S ≥

N. The critical delay of algorithm 1 occurs

during the calculation of S. This lead to variant

modification of algorithm 1 to reduce the carry

propagation delay.

Ⅲ. PROPOSED HARDWARE DESIGN

In this section, we propose an efficient

hardware design of Montgomery algorithm with

reduce area complexity. The algorithm

implemented is as proposed by Walter[3]

shown in Algorithm 2.

Algorithm 2: Modified Montgomery Multiplication
Inputs: A, B, N (modulus)

Output: S[k + 2]

1. S[0] = 0;

2. for i = 0 to k + 1 {

3. qi = (S[i]0 + A[i] * B0) mod 2;

4. S[i+1]=(S[i]+A[i] * B + qi * N) div 2; }

5. return S[k + 2]

A. Simplified Q_logic Unit

From line (4) of algorithm 2, the computation

of S[i+1] depends on the pre-computation of qi

which evaluates to 0 or 1. Evaluation of even

or odd numbers(line 3) can simply be deduced

from the LSB (0=even, 1=odd). Inference can be

made that qi is influenced by A[i]. As a result,

a logic circuit of bit operation can model the

given mathematical equation on line 3 as

shown in fig. 1.

Fig. 1. Logic circuit of the simplified Q_logic

B. Architecture of Proposed Multiplier

Fig. 2 illustrates the block diagram of the

proposed multiplier. Registers A, B and N store

the inputs, S (shift reg) stores the intermediate

computation and R represents the output. The

arithmetic unit consists of two adders(two-level

addition). Based on the control signals to

multiplexers M1 and M2, different computations

are carried out. Assuming both A[i] and qi

equal zero(0), M1 and M2 route zero(0) to the

output. As a result S[i]=S[i-1]. In case A[i] and

저면적 RSA를 위한 효율적인 Montgomery 곱셈기 하드웨어 설계

- 577 -

qi equal one(1), M1 and M2 route B and N

respectively. Therefore, S[i]=S[i-1]+B+N from

line(4). At any given combination, the

appropriate signals are routed to the two-level

adder for computation. Note that S is a shift

register which outputs a bit shift(right). The

shifting accounts for the division by 2. The

END signal controls the number of iterations

before the final output is registered to R. All

lines in short dashes represent bit signals.

Fig.2 proposed multiplier structure

Multiplier #Cycle
Delay

(ns)

Area

(um2)

Throughput

Rate(Mbps)
[4] 1049 5.60 406k 174.3

[5] 880 4.00 498k 290.9

proposed 1 1026* 4.00 313k 249.5

proposed 2 1026* 1.13 465k 883.2

Table 1. Comparison of different Montgomery

multiplier with 1024-bit key size

Ⅳ. EXPERIMENTAL RESULTS

The synthesis of the proposed hardware

design was done using TSMC 90nm CMOS cell

library from Synopsys Design Compiler. Table 1

shows comparisons of different Montgomery

multipliers. According to Kuang[5], #cycle

represent the average clock cycles for

completing one Montgomery operation

measured through the simulation of 10000

random input patterns. On the other hand, the

#cycle with asterisks (*) denote the worst case

scenario to complete one Montgomery

operation.

Our proposed multiplier design showed a

reduction of about 37% in hardware area over

the Kuang[5] at 250MHz. In addition, a clock

speed of 884.9MHz was achieved with our

design. For high-speed applications, our max

frequency shows throughput enhancement by a

factor of 3.04 and a reduction of about 6% in

hardware complexity. A gate count of 56K and

84K were achieved at 250MHz and 884.9MHz

operating frequency respectively.

Ⅴ. CONCLUSION

In this paper, we presented an alternative

hardware design of Montgomery algorithm as

modified by Walter. A simplified Q_logic was

designed coupled with a compact arithmetic

unit. Kuang[5] showed a reduction in clock

cycles which was better than our approach.

Synthesis results conclude that our multiplier

has an improved performance for low area

modular multiplication applications.

Acknowledgments

This research was supported by the

MSI(Ministry of Science, ICT and Future

Planning), Korea, under the Global IT Talent

support program(IITP-2017-0-01681) and Human

Resource Development Project for Brain

scouting program(IITP-2016-0-00352) supervised

by the IITP(Institute for Information and

Communication Technology Promotion)

REFERENCE

[1] R. L. Rivest, A. Shamir, and L. Adleman,

“A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems,” Commun.

ACM, Vol. 21, No. 2, pp. 120-126, Feb.

1978.

[2] P. L. Montgomery, “Modular multiplication

without trial division,” Math. Comput.,

Vol. 44, No. 170, pp. 519–521, Apr. 1985.

[3] C. D. Walter, “Montgomery exponentiation

needs no final subtractions,” Electron. Lett.,

Vol. 35, No. 21, pp. 1831-1832, Oct. 1999.

[4] Y. Y. Zhang, A. Li, L. Yang, and S. W.

Zhang, “An efficient CSA architecture for

Montgomery’s modular multiplication,”

Microprocessors Microsyst., Vol. 31, No.

7, pp. 456-459, Nov. 2007.

[5] S. R. Kuang, K. Y. Wu and R. Y. Lu,

“Low-Cost High-Performance VLSI

Architecture for Montgomery Modular

Multiplication,” IEEE Trans. Very Large

Scale Integration (VLSI) Syst., Vol. 24,

No. 2, pp. 440-442, Feb. 2016.

