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Ⅰ. INTRODUCTION

Public key cryptosystems are vitals as far as 

information security is concerned. RSA is the 

most widely used public key algorithm[1]. RSA 

requires repeated modular multiplication to 

compute for modular exponentiation. Modular 

multiplication with large numbers is 

time-consuming. The Montgomery algorithm is 

used as the core algorithm for cryptosystems 

based on modular arithmetic. Montgomery 

algorithm determines the quotient by replacing 
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요  약

공개 키 암호화에서 RSA 알고리즘은 연산시간이 높은 modular 지수 연산을 사용한다. RSA의 
modular 지수 연산은 반복되는 modular 곱셈을 통해 연산한다. 빠른 해독 및 암호화 속도를 가지는 
높은 효율의 RSA 알고리즘을 위해 수년간 빠른 modular 곱셈 알고리즘이 연구되었다. 그러나, 

Montgomery 곱셈은 추가적인 피연산자(반복 루프가 있는 3개의 피연사자)에 의해  캐리 전파 지연
이 발생되는 단점이 있다. 본 논문에서는 RSA 암호화 시스템의 가벼운 어플리케이션을 위한 
Montgomery 곱셈의 면적을 줄이는 하드웨어 구조를 제안한다. 제안된 하드웨어 구조는 90nm 셀 라
이브러리 공정에서 합성한 결과 884.9MHz에서 84k 게이트 수를 가지며, 250MHz에서 56k 게이트 
수를 가진다.

ABSTRACT

In public key cryptography such as RSA, modular exponentiation is the most time-consuming 

operation. RSA’s modular exponentiation can be computed by repeated modular multiplication. 

To attain high efficiency for RSA, fast modular multiplication algorithms have been proposed to 

speed up decryption/encryption. Montgomery multiplication is limited by the carry propagation 

delay from the addition of long operands. In this paper, we propose a hardware structure that 

reduces the area of the Montgomery multiplication implementation for lightweight applications of 

RSA. Experimental results showed that the new design can achieve higher performance and 

reduce hardware area. A frequency of 884.9MHz and 250MHz were achieved with 84K and 56K 

gates respectively using the 90nm technology.
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the trial division by modulus with a series of 

additions and shift operations[2]. However, the 

three operand addition in the iteration loop 

causes carry propagation. The propagation 

delay influences the performance of the RSA. 

To avoid the delay, several approaches have 

been proposed to speed up the operation based 

on carry-save addition[3-5]. In this paper, we 

focus on the hardware design of efficient 

Montgomery multiplier with  a two-level adder. 

A simplified Q_logic was designed for bit 

operation which accounted for a reduction in 

area.

Section II reviews radix-2 Montgomery 

algorithms. We proposed an efficient design of 

the Montgomery algorithm in section III. In 

Section IV, we compare different Montgomery 

multipliers. Finally, concluding  remarks are 

drawn in Section V.

Ⅱ. MODULAR MULTIPLICATION

The Montgomery multiplication is an 

algorithm used to compute the product of two 

integers A and B modulo N. Algorithm 1 

shows the radix-2 version of the Montgomery 

multiplication algorithm. Given two integers a 

and b; where a, b < N (i.e. N is the k-bit 

modulus), R can be defined as 2k modN where 

2k-1≤ N < 2k. The N-residue of a and b with 

respect to R can be defined as (1)

A = (a * R)mod N, B = (b * R) mod N (1)

Algorithm 1: Radix-2 Montgomery Multiplication
Inputs: A, B, N (modulus)

Output: S[k]

1. S[0] = 0;

2. for i = 0 to k - 1 {

3. qi = (S[i]0 + Ai * B0) mod 2;

4. S[i+1] = (S[i] + Ai * B + qi * N)/2;}

5. if(S[k] ≥N ) S[k] = S[k] - N;

6. return S[k]

Based on (1), the Montgomery modular 

product S of A and B can be obtained as (2)

S = (A * B * R-1)mod N (2)

where R-1 is the inverse of R modulo N, i.e. 

R * R-1 = 1 (mod N). Since the convergence 

range of S in Montgomery Algorithm is 0 ≤  S 

< 2N, an additional operation S = S –  N is 

required to remove the oversized residue if S ≥ 

N. The critical delay of algorithm 1 occurs 

during the calculation of S. This lead to variant 

modification of algorithm 1 to reduce the carry 

propagation delay.

Ⅲ. PROPOSED HARDWARE DESIGN

In this section, we propose an efficient 

hardware design of Montgomery algorithm with 

reduce  area complexity. The algorithm 

implemented is as proposed by Walter[3] 

shown in Algorithm 2.

Algorithm 2: Modified Montgomery Multiplication
Inputs: A, B, N (modulus)

Output: S[k + 2]

1. S[0] = 0;

2. for i = 0 to k + 1 {

3. qi = ( S[i]0 + A[i] * B0 ) mod 2;

4. S[i+1]=(S[i]+A[i] * B + qi * N ) div 2; }

5. return S[k + 2]

A. Simplified Q_logic Unit

From line (4) of algorithm 2, the computation 

of S[i+1] depends on the pre-computation of qi 

which evaluates to 0 or 1. Evaluation of even 

or odd numbers(line 3) can simply be deduced 

from the LSB (0=even, 1=odd). Inference can be 

made that qi is influenced by A[i]. As a result, 

a logic circuit of bit operation can model the 

given mathematical equation on line 3 as 

shown in fig. 1.

Fig. 1. Logic circuit of the simplified Q_logic

B. Architecture of Proposed Multiplier

Fig. 2 illustrates the block diagram of the 

proposed multiplier. Registers A, B and N store 

the inputs, S (shift reg) stores the intermediate 

computation and R represents the output. The 

arithmetic unit consists of two adders(two-level 

addition). Based on the control signals to 

multiplexers M1 and M2, different computations 

are carried out. Assuming both A[i] and qi 

equal zero(0), M1 and M2 route zero(0) to the 

output. As a result S[i]=S[i-1]. In case A[i] and 
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qi equal one(1), M1 and M2 route B and N 

respectively. Therefore, S[i]=S[i-1]+B+N from 

line(4). At any given combination, the 

appropriate signals are routed to the two-level 

adder for computation. Note that S is a shift 

register which outputs a bit shift(right). The 

shifting accounts for the division by 2. The 

END signal controls the number of iterations 

before the final output is registered to R. All 

lines in short dashes represent bit signals.

Fig.2 proposed multiplier structure

Multiplier #Cycle
Delay

(ns)

Area

(um2)

Throughput 

Rate(Mbps)
[4] 1049 5.60 406k 174.3

[5] 880 4.00 498k 290.9

proposed 1 1026* 4.00 313k 249.5

proposed 2 1026* 1.13 465k 883.2

Table 1. Comparison of different Montgomery 

multiplier with 1024-bit key size

Ⅳ. EXPERIMENTAL RESULTS

The synthesis of the proposed hardware 

design was done using TSMC 90nm CMOS cell 

library from Synopsys Design Compiler. Table 1 

shows comparisons of different Montgomery 

multipliers. According to Kuang[5], #cycle 

represent the average clock cycles for 

completing one Montgomery operation 

measured through the simulation of 10000 

random input patterns. On the other hand, the 

#cycle with asterisks (*) denote the worst case 

scenario to complete one Montgomery 

operation.

Our proposed multiplier design showed a 

reduction of about 37% in hardware area over 

the Kuang[5] at 250MHz. In addition, a clock 

speed of 884.9MHz was achieved with our 

design. For high-speed applications, our max 

frequency shows throughput enhancement by a 

factor of 3.04 and a reduction of about 6% in 

hardware complexity. A gate count of 56K and 

84K were achieved at 250MHz and 884.9MHz 

operating frequency respectively.

Ⅴ. CONCLUSION

In this paper, we presented an alternative 

hardware design of Montgomery algorithm as 

modified by Walter. A simplified Q_logic was 

designed coupled with a compact arithmetic 

unit. Kuang[5] showed a reduction in clock 

cycles which was better than our approach. 

Synthesis results conclude that our  multiplier 

has an improved performance for low area 

modular multiplication applications.
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