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ABSTRACT

In public key cryptography such as RSA, modular exponentiation is the most time-consuming
operation. RSA’s modular exponentiation can be computed by repeated modular multiplication.
To attain high efficiency for RSA, fast modular multiplication algorithms have been proposed to
speed up decryption/encryption. Montgomery multiplication is limited by the carry propagation
delay from the addition of long operands. In this paper, we propose a hardware structure that
reduces the area of the Montgomery multiplication implementation for lightweight applications of
RSA. Experimental results showed that the new design can achieve higher performance and
reduce hardware area. A frequency of 884.9MHz and 250MHz were achieved with 84K and 56K
gates respectively using the 90nm technology.
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I . INTRODUCTION

Public key cryptosystems are vitals as far as
information security is concerned. RSA is the
most widely used public key algorithm[1]. RSA
requires repeated modular multiplication to

compute for modular exponentiation. Modular
multiplication ~ with  large = numbers is
time-consuming. The Montgomery algorithm is
used as the core algorithm for cryptosystems
based arithmetic. Montgomery
algorithm determines the quotient by replacing

on modular
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the trial division by modulus with a series of
additions and shift operations[2]. However, the
three operand addition in the iteration loop
causes carry propagation. The propagation
delay influences the performance of the RSA.
To avoid the delay, several approaches have
been proposed to speed up the operation based
on carry-save addition[3-5]. In this paper, we
focus on the hardware design of efficient
Montgomery multiplier with a two-level adder.
A simplified Q_logic was designed for bit
operation which accounted for a reduction in
area.

Section II radix-2 Montgomery
algorithms. We proposed an efficient design of
the Montgomery algorithm in section III. In
Section IV, we compare different Montgomery
multipliers. Finally, concluding  remarks are
drawn in Section V.
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II. MODULAR MULTIPLICATION

The Montgomery multiplication is an
algorithm used to compute the product of two
integers A and B modulo N. Algorithm 1
shows the radix-2 version of the Montgomery
multiplication algorithm. Given two integers a
and b, where a, b < N (i.e. N is the k-bit
modulus), R can be defined as 2% modN where
2'< N < 2 The N-residue of a and b with
respect to R can be defined as (1)

A =(a*Rmod N, B=(b*R) modN (1)

Algorithm 1: Radix-2 Montgomery Multiplication
Inputs: A, B, N (modulus)

Output: S[K]

1. S[0] = 0;

2. fori=0to k -1{

3. gi = (S[i]J0 + Ai * BO) mod 2;

4. S[i+1] = (S[i] + Ai * B + qgi * N)/2;}
5. if(S[k] =N ) S[k] = S[k] - N;

6. return S[K]

Based on (1), the Montgomery modular
product S of A and B can be obtained as (2)

S=(A*B*RYmod N )

where R? is the inverse of R modulo N, i.e.
R * R" = 1 (mod N). Since the convergence
range of S in Montgomery Algorithm is 0 < S
< 2N, an additional operation S = S - N is
required to remove the oversized residue if S 2

N. The critical delay of algorithm 1 occurs
during the calculation of S. This lead to variant
modification of algorithm 1 to reduce the carry
propagation delay.

Ill. PROPOSED HARDWARE DESIGN

In this section, we propose an efficient
hardware design of Montgomery algorithm with
reduce area complexity. The algorithm
implemented is as proposed by Walter[3]
shown in Algorithm 2.

Algorithm 2: Modified Montgomery Multiplication

Inputs: A, B, N (modulus)

Output: Sk + 2]

1. S[0] = O;

.fori=0to k +1{

. gi = ( S[i]0 + A[i] * BO) mod 2;

. S[i+1]=(S[il*A[i] * B + gi * N ) div 2; }
. return S[k + 2]

o~ WN

A. Simplified Q_logic Unit

From line (4) of algorithm 2, the computation
of S[i+1] depends on the pre-computation of qi
which evaluates to 0 or 1. Evaluation of even
or odd numbers(line 3) can simply be deduced
from the LSB (0=even, 1=odd). Inference can be
made that qi is influenced by A[i]. As a result,
a logic circuit of bit operation can model the
given mathematical equation on line 3 as
shown in fig. 1.

S[0]
B[0]
Alil

Fig. 1. Logic circuit of the simplified Q_logic

B. Architecture of Proposed Multiplier

Fig. 2 illustrates the block diagram of the
proposed multiplier. Registers A, B and N store
the inputs, S (shift reg) stores the intermediate
computation and R represents the output. The
arithmetic unit consists of two adders(two-level
addition). Based on the control signals to
multiplexers M1 and M2, different computations
are carried out. Assuming both A[i] and qi
equal zero(0), M1 and M2 route zero(0) to the
output. As a result S[i]=S[i-1]. In case A[i] and
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qi equal one(l), M1 and M2 route B and N
respectively. Therefore, S[i]=S[i-1]+B+N from
line(4). At any given combination, the
appropriate signals are routed to the two-level
adder for computation. Note that S is a shift
register which outputs a bit shift(right). The
shifting accounts for the division by 2. The
END signal controls the number of iterations
before the final output is registered to R. All
lines in short dashes represent bit signals.
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Fig.2 proposed multiplier structure

Table 1. Comparison of different Montgomery
multiplier with 1024-bit key size

Lo Delay  Area  Throughput
Multiplier ~ #Cycle )
(ns) (um”) _Rate(Mbps)
[4] 1049 5.60 406k 174.3
[5] 880 4.00 498k 290.9
proposed 1 1026* 4.00 313k 249.5
proposed 2 1026* 1.13 465k 883.2

IV. EXPERIMENTAL RESULTS

The synthesis of the proposed hardware
design was done using TSMC 90nm CMOS cell
library from Synopsys Design Compiler. Table 1
shows comparisons of different Montgomery
multipliers. According to Kuang[5], #cycle
represent the average clock cycles for
completing one Montgomery operation
measured through the simulation of 10000
random input patterns. On the other hand, the
#cycle with asterisks (*) denote the worst case
scenario to  complete one  Montgomery
operation.

Our proposed multiplier design showed a
reduction of about 37% in hardware area over
the Kuang[5] at 250MHz. In addition, a clock
speed of 8849MHz was achieved with our
design. For high-speed applications, our max
frequency shows throughput enhancement by a
factor of 3.04 and a reduction of about 6% in

hardware complexity. A gate count of 56K and
84K were achieved at 250MHz and 884.9MHz
operating frequency respectively.

V. CONCLUSION

In this paper, we presented an alternative
hardware design of Montgomery algorithm as
modified by Walter. A simplified Q_logic was
designed coupled with a compact arithmetic
unit. Kuang[5] showed a reduction in clock
cycles which was better than our approach.
Synthesis results conclude that our multiplier
has an improved performance for low area
modular multiplication applications.
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