Non-midway 광 위상 공액기를 갖는 분산 제어 링크

이성렬*

*목포해양대학교

Dispersion-managed Transmission Links with the Non-midway Optical Phase Conjugator

Seong-Real Lee*

*Mokpo National Maritime University

E-mail: reallee@mmu.ac.kr

요 약

그룹 속도 분산과 비선형 효과의 상호 작용에 의해 왜곡되는 WDM 신호의 보상을 위한 분산 제어에 광 위상 공액기 (OPC; optical phase conjugator)가 적용된 링크에서 OPC가 전체 전송 링크의중간 (midway)가 아닌 다양한 곳에 위치하는 경우 각각의 최대 중계 수를 도출해보았다.

ABSTRACT

The maximum number of fiber spans is induced in disoersion-managed optical links with the non-midway optical phase conjugator (OPC) for the compensation of the distorted WDM signals due to the group velocity dispersion (GVD) are evaluated and compared.

키워드

Fiber span number, Dispersion Management, Optical Phase Conjugator, Residual dispersion per span, Net residual dispersion, Group velocity dispersion, WDM signal distortion.

1. 서 론

대용량 정보의 전송과 장거리 전송을 가능하게 하는 분산 제어 (DM; dispersion management)[1] 와 광 위상 공액 (OPC; optical phase conjugation)[2]이 결합된 기술이 적용된 링크에서 OPC가 전체 전송 거리의 중간 (midway)가 아닌곳에 위치한 경우 960 Gbps급 파장 분할 다중 (WDM; wavelength division multiplexing) 신호의 고품질 전송이 가능한 최대 중계 구간 수 (number)를 도출해 보고자 한다. 제안되는 전송링크에서 단일 모드 광섬유 (SMF; single mode fiber)의 길이와 각 중계 구간 (fiber spans) 당 잉 역 분산 (RDPS; residual dispersion per span)의 분포는 모든 중계 구간에서 일정하다.

II. 광전송 링크와 시스템의 모델링

그림 1은 본 연구에서 살펴보고자 하는 OPC와 DM이 적용된 광전송 링크와 WDM 전송 시스템

의 구조를 나타낸 것이다. 전송 링크는 전체 전송 거리의 중간에 있는 OPC를 중심으로 전반 구획 (former half section)과 후반 구획 (latter half section) 각각 n개와 m개의 중계 구간으로 구성된 다. 본 연구의 목적인 OPC가 midway를 포한한 다른 다양한 위치에 있을 때의 최대 중계 구간 수 (즉 최대 전송 거리)를 살펴보기 위하여 OPC의 위치 비인 n:m을 3:7, 4:6, 5:5, 6:4, 7:3으로 고려하 여 시뮬레이션을 수행하였다. 본 연구에서 고려한 각 중계 구간을 구성하는 광섬유의 배열은 두 가 지이다. 첫 번째는 송신부부터 OPC까지의 전반 전송 구획에서는 분산 보상 광섬유 (DCF; dispersion compensating fiber) 다음에 SMF가 오 는 구조, 동시에 OPC부터 수신부까지의 후반 전 송 구획에서는 SMF 다음에 DCF가 오는 구조이 다. 또 다른 한 가지는 전반 전송 구획에서는 SMF+DCF, 후반 전송 구획에서는 DCF+SMF 구조

SMF의 길이 l_{SMF} 는 $80~{\rm km}$ 로 동일하게 하였다. 또한 손실 계수 α_{SMF} 는 $0.2~{\rm dB/km}$, 비선형 계수

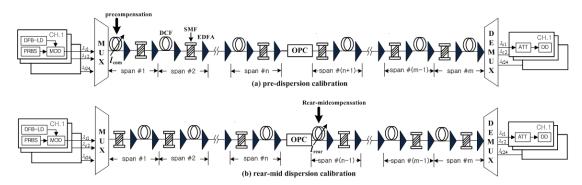
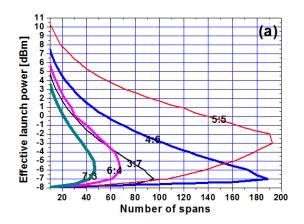


그림 1. 광전송 링크와 WDM 시스템의 구성

 γ_{SMF} 는 1.35 $W^{-1}km^{-1}$ (@1,550 nm), 분산 계수 D_{SMF} 는 17 ps/nm/km(@ 1,550 nm)로 동일하게 모델링하였다. DCF의 손실 계수 α_{DCF} 는 0.6 dB/km, 비선형 계수 γ_{DCF} 는 5.06 $W^{-1}km^{-1}$ (@1,550 nm), 분산 계수 D_{DCF} 는 -100 ps/nm/km(@ 1,550 nm)로 모든 중계 구간에 대해 동일하게 하였다.

그림 1(a)의 구조에서는 전반 구획의 첫 번째 DCF 길이 l_{pre} 가 전체 잉여 분산 (NRD; net residual dispersion)을 결정하는 pre-dispersion calibration (pre-DC)을 통해 NRD를 10 ps/nm가되게 하였다. 또한 그림 1(b)의 구조에서는 후반구획의 첫 번째 DCF 길이 l_{rear} 가 NRD를 결정하는 rear-mid dispersion calibration (rear-mid-DC)을 통해 NRD를 10 ps/nm가 되게 하였다.

DC 방식에 따른 NRD 조절 중계 구간이 다른 모든 중계 구간에서의 RDPS는 0 ps/nm가 되도 록 DCF를 길이를 설정하였다.


그림 1의 송신기 Tx는 분포 궤환 레이저 다이 오드 (DFB-LD; distributed feedback laser diode) 로 DFB-LD의 중심 파장은 1,550 nm부터 100 GHz(즉 0.8 nm) 간격으로 1568.4 nm까지 채널별 로 24개를 할당하였고, 각각의 채널은 외부 변조 기에 의해 소광비 (ER; extinction ratio)가 10 dB 인 2차 가우시안 펄스 RZ 형식으로 광 신호를 생 성하도록 모델링하였다.

전체 전송로 중간에 위치한 OPC는 참고 문현 [3]에서와 동일한 파라미터를 갖는 HNL-DSF(highly nonlinearity-dispersion shifted fiber)를 비선 형 매질로 갖는 구조로 모델링하였다.

Ⅲ. 시뮬레이션 결과 및 검토

그림 2(a)와 (b) 각각은 pre-DC와 rear-mid-DC로 NRD를 10 ps/nm로 설정한 링크에서 24개의 WDM 채널 중 수신 성능이 최악인 채널의 눈 열림 패널티 (EOP; eye opening penalty)가 1 dB이하로 얻어지는 입사 전력에 따른 최대 중계 구간의 수를 OPC 위치에 따라 나타낸 것이다. 당연한 결과이지만 OPC가 midway (즉 5:5)에 위치한

경우의 입사 전력에 따른 최대 중계 구간의 수가 NRD 조절 방식에 관계없이 가장 양호하게 얻어 지고 OPC가 midway로부터 벗어날수록 입사 전력에 따른 최대 중계 구간의 수가 줄어드는 것을 확인할 수 있다.

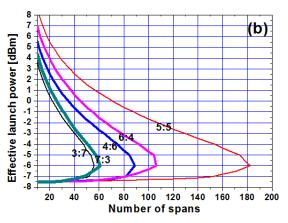


그림 2. 중계 구간 수에 따른 유효 입사 전력 (1 dB EOP를 얻을 수 있는 입사 전력)의 범위. (a) pre-DC, (b) rear-mid-DC.

그러나 NRD를 조절하는 방식에 따라 OPC가 벗어나는 위치에 따른 WDM 채널 보상 특성이 달라지는 것을 알 수 있다. 즉 NRD를 pre-DC로 조절하는 링크에서는 OPC가 송신부에 가까울수록 보상 특성이 좋아지는 (이는 4:6과 3:7의 보상특성이 6:4와 7:3보다 양호하게 얻어지는 것으로확인됨) 반면 NRD를 rear-mid-DC로 조절하는 링크에서는 OPC가 수신부에 가까울수록 보상 특성이 좋아지는 것을 확인할 수 있다.

결과적으로 OPC를 non-midway에 위치시키는 링크 구조에서 NRD를 조절하는 중계 구간이 있 는 전송 반 구획을 구성하는 중계 구간의 수를 상대적으로 줄여주는 구조가 WDM 채널 보상 면 에서 유리하다는 것을 본 연구를 통해 확인할 수 있다.

참고문헌

- [1] X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," *J. Lightwave Technol.*, Vol. 24, No. 5, pp. 2038~2044, 2006.
- [2] S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", *J. Lightwave Technol.*, Vol. 14, No. 3, pp 243 ~248, 1996.
- [3] S. R. Lee, "Dispersion Management and Optical Phase Conjugation in Optical Transmission Links with a Randomly Distributed Single-Mode Fiber Length," *J. of Inform. and Comm. Converg. Eng.*, Vol. 11, No. 1, pp. 1~6, 2013.