Mass estimation of halo CMEs using synthetic CMEs based on a full ice-cream cone model

  • Published : 2019.10.14

Abstract

A coronal mass ejection (CME) mass is generally estimated by the total brightness measured from white-light coronagraph observations. The total brightness are determined from the integration of the Thomson scattering by free electrons of solar corona along the line of sight. It is difficult to estimate the masses of halo CMEs due to the projection effect. To solve this issue, we construct a synthetic halo CME with a power-law density distribution (ρ = ρ0r-3) based on a full ice-cream cone model using SOHO/LASCO C3 observations. Then we compute a conversion factor from observed CME mass to CME mass for each CME. The final CME mass is determined as their average value of several CME masses above 10 solar radii. Our preliminary analysis for six CMEs show that their CME mass are well determined within the mean absolute relative error in the range of 4 to 15 %.

Keywords

Acknowledgement

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (2018-0-01422, Study on analysis and prediction technique of solar flares).