
 

 

Abstract 
 

For the safe and reliable operation of Lithium-ion batteries in 
Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is 
essential to have accurate information of the battery such as State 
of Charge (SOC). Many kinds of different techniques to estimate 
the SOC of the batteries have been developed so far such as the 
Kalman Filter. However, when it is applied to the multiple number 
of batteries it is difficult to maintain the accuracy of the estimation 
over all cells due to the difference in parameter value of each cell. 
Moreover the difference in the parameter of each cell may become 
larger as the operation time accumulates due to aging. In this paper 
a novel Deep Neural Network (DNN) based SOC estimation 
method for multi cell application is proposed. In the proposed 
method DNN is implemented to learn non-linear relationship of 
the voltage and current of the lithium-ion battery at different SOCs 
and different temperatures. In the training the voltage and current 
data of the Lithium battery at charge and discharge cycles obtained 
at different temperatures are used. After the comprehensive 
training with the data obtained with a cell resulting estimation 
algorithm is applied to the other cells. The experimental results 
show that the Mean Absolute Error (MAE) of the estimation is 
0.56% at 25°C, and 3.16% at 60°C with the proposed SOC 
estimation algorithm. 

 
1. Introduction 

 
Lithium ion batteries are the important power source for Electric 

Vehicles (EVs), Portable Electronics and Energy Storage Systems 
(ESSs). The Lithium ion batteries have advantages over the other 
batteries such as high specific energy and high energy density. Due 
to those advantage a longer drive range, a higher cycle life, a higher 
columbic efficiency (up to 98%) and lower self-discharge rate can be 
achieved when it is used for EV applications. For the safe and 
reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) 
or Energy Storage Systems (ESSs), it is essential to have accurate 
information of the battery such as State of Charge (SOC). 

The estimating methods for SOC include Coulomb counting (CC), 
Extended Kalman Filter (EKF), Particle Filter (PF) and Observer. 
One of the most popular methods in estimating SOC is CC method 
which calculates the SOC by accumulating the currents over time. 
However, due to the errors in the measurements, the accurate SOC 
estimation is difficult as the error is also accumulating over time. 
Other methods such as EKF, PF and Observer can estimate the SOC 
with a good enough accuracy since it does not fully rely on the 
current accumulation. However, these methods need an accurate 
model of battery for the accurate estimation of SOC. 

Machine learning has been used over the long period of time. 
Machine learning techniques has an advantage that they can learn 
with raw data and without the need for hand-engineered models. In 
ref [3], an extreme learning machine is used at a constant ambient 
temperature of 25°C. Though an SOC estimation error under 1.5% is 

claimed, this can be only achieved in conjunction with the Kalman 
filter. Since the extreme learning machine is trained on constant 
discharge pulses their performance in transient load demand and/or 
in real world scenarios is unknown. In ref [4], Support Vector 
Machine (SVM) is used with a moving window to improve the 
computational efficiency when modeling the battery; a MAE of less 
than 2% is achieved. However, as is the case for the above works, it 
can be achieved in conjunction with an EKF. In Ref [5], a load 
classifying neural network is used on 12 US06 driving cycle, 
however different kind of neural networks are used for idling, 
charging and discharging operation. The method achieves an 
average estimation error of 3.8% or 2.6% when additional filtering is 
applied. Furthermore, validation is performed on only pulse 
discharge test hence the performance of the method in real world 
application is unknown. 

In this paper a novel DNN based SOC estimation method for the 
Lithium batteries is proposed without the help of Kalman Filter or 
any other method. The voltage and current data obtained at different 
temperature are mapped to SOC. The DNN is first trained with a 
data set obtained with a cell and then the resulting algorithm is 
applied to the other cells of the same kind. The proposed method has 
following advantages. (1) A single DNN maps inputs signals of 
battery such as voltage, current and temperature directly to the 
battery SOC and use of additional filter or other conventional 
estimation algorithms are not required. (2) The DNN can get its own 
weights by self-learning algorithm. This is different from other 
techniques such as lumped parameter models, equivalent circuit 
model or electrochemical models which require a great amount of 
time. (3) Only one DNN can be used to estimate SOC at different 
ambient temperature conditions. It can be regarded as a significant 
advantage since the traditional estimation techniques uses different 
models or different look-up tables for the estimation at different 
ambient temperatures. 

 
2. Deep Neural Network for the SOC Estimation 
 
The feedforward neural networks can model complex non-linear 

system by mapping the inputs to a desired output. Once training is 
completed DNN can estimate SOC in a very short period of time. 
In this paper the Structure of DNN consists of three-layer 
including an input layer, hidden layer, and output layer. The model 
is shown in Fig. 1. The equation for single neuron is given in Eq. 
(1.1). 

 ( )ˆ Ty f W x b= × +  (1.1) 

Where, x is an input vector, W is weights and b is bias. Each layer 
consist of multiple neurons which interact each other. And each 
layer has its own equation and output as given in Eq. (1.2). 
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Where, f represents activation functions and RELU is the best 
selection for the regression problem. The DNN has more than one 
hidden layer, Eq. (1.2) can be written for all layers as Eq. (1.3). 
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∑  (1.3) 

Where, k represents the number of neurons, l represents number 
of layers and Y is the output SOC value. The mean square error 
calculated in the preceding feedback process is shown in Eq. (1.4). 
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Where, k = 1, 2, 3…n, E represents the mean square error, tk 
represents the expected output and yk represents the actual output. 
In the process of error backpropagation, the weight is adjusted by 
following Eq. (1.5). 
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Where, Wa+1 represents the correct weight, wa represents the 
current state weight and η represents the learning rate. Through 
continuous training and adjustment, the DNN can obtain the best 
training model so that the mean square error can meet the 
requirements. In this method, RMSprop optimizer is used to 
optimize weight of the mean square error. The optimizer can 
effectively improve the convergence speed of DNN and reduce the 
prediction error. 
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Figure 1. DNN structure 

 
2.1 Data Preparation, Learning and Validation 
 
Three different Dynamometer Driving Cycles (DDCs) with 

some charging profiles are applied on a battery cell and the 
measured data are used to train and to validate the DNN. Three 
DDCs such as UDDS, HWFET and Japanese 10-15 SOC are 
selected to obtain the range of mean,   power from the battery. 
The UDDS is applied to a battery and the resulting data measured 
are used for DNN training at different ambient temperatures 
ranging from -20°C to 60°C. For the testing HWFET and Japanese 
10-15 mode drive cycle are used at 0°C, 25°C and 60°C degree 
temperatures. All the information about DDCs can be found in 
Table 1. 

 
Table 1 

Used DDCs and their characteristics 
Test Use Power (W) 

Mean RMS Peak 

UDDS Training 3.627 4.987 22.62 

HWFET Validation 3.2 4.45 17.85 

J 10-15 mode Validation 1.48 1.219 13.90 
 

The test procedure to acquire data is as followings: (1) Set 
thermal chamber temperature to a certain desirable value, (2) 
Charge the battery fully and (3) Run the DDC profile while 
acquiring the data. The DDC repeats until the battery voltage 
reaches 2.5V. This process is repeated for all temperatures and all 
the DDCs. Figure .2 shows experimental setup for measurement of 
battery data. National instrument cDAQ-9174 is used to acquire 
voltages and current signals through custom sensing circuit from 
the battery module placed in heat chamber. Heat chamber 
maintains constant temperature through. 
 

Table 2. 

Samsung INR18650-29E 

Nominal Voltage 3.65V 

Nominal Capacity 2850mAH 

Min/Max Voltage 2.5V/4.2V 

Max. Charge Current 2750mA 

Min. Charging temperature 10°C 

Max. discharge current 8250mA (non-continuous) 
 

The Lithium battery cell used in the experiment is Samsung 
INR18650-29E, Nickel Manganese Cobalt Chemistry Li-ion 
battery, with a nominal capacity of 2.85Ah. Other specifications 
are shown in Table 2. The Extended Kalman Filter is used to 
estimate the SOC while the DDCs are applied to the battery. 

Voltage & Current 
Sensing Circuit

Temperature Chamber

cDAQ-9174Control Computer

Power (+ve)

Power (-ve)

+ve  Sense Wire

-ve Sense Wire

 
Figure 2. Experimental Setup for the Lithium battery test 

 
In this paper, TensorFlow, a machine learning library in Python, 

is used. The TensorFlow framework provides an ability to quickly 
prototype and test different network architectures and it is able to 
automatically compute the backpropagation. The training took 
about 5hrs and it depends on the amount of input data. 

 
Fig. 3 Training Progress over 1000 OPOCHS. 

 
The DNN is allowed to learn with the data measured through 

the pretest. Fig. 3 shows the learning progress over 1000 EPOCHS. 
The MAE Error in training is around 1.4% and the MAX value is 
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around 5%, which proves that the training was done successfully. 
After successful learning of DNN it is allowed to validate itself 

with 20% of data in the same profile to counter check the accuracy 
of the network trained. It can been seen in the Fig. 3 that the DNN 
is well trained and validation accuracy is of MAE <1%. 
 
 

 
Fig. 4 Training results of DNN. 

 
2.2 State of Charge Estimation Results 
 
As already discussed three different DDCs including UDDS, 

HWFET and Japan 10-15 modes are applied to a Lithium battery 
and the data are acquired and stored in a PC. In the experiments, 
the UDDS profile is used for learning and validation of DNN 
while HWFET and Japan 10-15 DDCs are used to evaluate the 
performance of the DNN for SOC estimation. Fig. 5 shows the 
SOC estimation result by the DNN. By comparing the true SOC 
values with the values estimated by DNN, the MAE of the SOC 
estimation is 0.591% and its MAX value is 5.9%. 
 

 
Fig. 5 SOC Estimation with HWFET DDC at 25°C 

 

 
 Fig. 6 SOC Estimation prediction error of HWFET at 25°C 

 
The HWFT and J1015 profiles are also run at 0°C, 25°V, and 

60°C. The voltage, current and temperature are recorded. The 
DNN is allowed to estimate SOC at these temperature and the 
SOC estimation error at 25°C is 0.59% and 0.236% for HWFET 
and J1015, respectively. 

The SOC estimation error is around 3.54%, 3.16% 1.8% and 
3.16% for HWFET at 0°C, HWFET at 60°C, J1015 at 0°C, and 

J1015 at 60°C, respectively, as shown in Fig. 7. 
 

 
Fig. 7 SOC Estimation errors with J 10-15 DDC at 25°C 

 
3. Conclusion 

 
The main contribution of the paper can be summarized as 

followings. Firstly, the measured battery voltage, current and 
temperature are mapped directly to SOC by the DNN and less than 
0.5% MAE in SOC estimation has been achieved. Secondly, the 
DNN self-learned all its weights and eliminated the need to hand-
engineer and to parameterize the traditional models. Thirdly, single 
DNN can be used to map the behavior of a lithium-ion cell at 
different temperatures. The DNN can be formulated as an equation 
so that it can be implemented in any kind of microcontroller. The 
SOC estimation of the large number of batteries can be achieved 
with relatively lower computational burden if the DNN is 
developed to learn the behaviors of the battery at different 
temperatures. 
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