Development of numerical recognition system using artificial neural network

Chae-Eun Jeong*, Byung-Wook Kim * ‡
*Dept. of Computer Science, Dong-Guk University-Gyeongju

요 약
인공신경망은 인간의 신경세포인 뉴런을 모델로서 사용한다. 인간은 외부에서 오는 정보를 뇌에서 받아들이고 판단한다. 받아들인 정보들을 통해 어떻게 생각할 것인지에 대한 이론을 기능하게 된다. 그러한 일련의 과정을 펼쳐서 숫자 데이터를 통해 사람이 유도하는 예측 값을 인식해내고, 학습된 예측 값을 실제 값과 비교해 분석하였다. 그리고 더 나아가 인공신경망에 대해 어떻게 응용할 것인지를 논의하였다.

1. 서론
1.1 연구의 필요성
최근 인공지능이 유행하고, 그에 따라 자연히 ‘기계의 모델을 인간으로 만들면 어떻게 해야 할까?’라는 의문점에서부터 이 연구에 대해 초점을 맞추어 가기 시작하였다. 이러한 호기심은 추상적이었고, 객관적인 표현을 생각하는데 있어 생각 두 기워드가 있다. 그것은 ‘데이터’와 ‘학습’이다. 평가 간단한 두 기워드를 어떤 방식으로 개발할 수 있는가 고민하였다. 그 단계에서 많은 데이터를 통해 학습과정을 거쳐 예측 값에 도달할 수 있는 인공신경망 알고리즘(Artificial Neural Network Algorithm)을 이용하기로 하였다.

신경망의 기술에 대한 응용분야는 사상상 광범위하다. 예를 들어 Robot, Data Mining, Financial Services, Language recognition, Information Engineering과 같은 수 많은 분야에 직관적 영향을 가지고 있다. 그 중에서 언어 인식을 제외하여 실험하고자 하는데, 이는 비교적 얕기 쉬운 데이터베이스 인식기 때문이다. 사실 언어 인식도 깊이 들어가기보다는 수준을 고려해 숫자 데이터로서 깊이 얻을 필요가 있다. 학습을 하려면 대량의 데이터가 필요한다. 수많이 이어진 데이터는 시간이나 비용적인 측면에서 부담이 되는 예로사항을 겪게 만드는 것이다.

1.2 연구의 목적
뉴런을 기반한 인공신경망은 학습을 통해 데이터를 update 한다. 이 때 계속해서 주어진 데이터를 통해서 최신의 정보를 얻을 것이고, 최신의 정보는 또다시 정확하고 의미 있는 성격을 가하게 된다. 이 연구에 있어 데이터는 어떻게 표현할 것인지, 어떻게 학습할 것인지에 척중을 해 분석할 것이다. 또한 정확한 것에 대한 조해 즉, 성능에 대해서도 알아볼 것이다. 이 때 사람이 어떤 숫자로 데이터가 주어질 것인가, 그리하여 본 개발의 목적은 사람이 본 손글씨 데이터를 컴퓨터가 인식하고, 무슨 숫자인지 머луш 것과 그것이 얼마나 정확한지 도출하는 것이다.

1.3 연구문제
서론에 나온 내용을 토대로 했을 때 연구의 문제가 다음과 같다.
1) 어떤 데이터를 쓴 것인가?
2) 데이터를 어떻게 표현할 것인가?
3) 어떻게 학습시킬 것인가?
4) 출력 값의 범위와 개수는 어떻게 되는가?
5) 출력 값이 실제 결과값에 비교해 어느 정도의 성능 혹은 정확도를 갖는가?

2. 이론적 배경
2.1 인공신경망의 기본 개념

출처: NAVER 지식과 컴퓨팅인터넷 IT 용어사전 뉴런 (그림 1) 뉴런과 기능 모델

- 29 -
인공신경망은 앞서 말한 것과 같이 생물학적으로 뉴런에 기초했다. 뉴런에 있는 수상돌기는 신호를 받아 들이고, 축돌돌기는 신호를 보내며, 시냅스가 다시 다른 뉴런으로부터 받은 신호를 출력한다. 그러한 원리와 과정을 컴퓨터에 사고에 빅데이터 표현한 것이 (그림 1)에서의 기능 모델이다. 이러한 뉴런의 시냅스로 신호를 데이터로 생각하고 이 뉴런들을 거쳐서 학습하는 과정을 연상할 수 있다. 게다가 단순화된 뉴런을 보면 입력-처리-출력의 간단한 순서를 따를 수 있다.

![그림 2] 3 계층 신경망

그렇다면 여러 개의 입력-처리-출력 순서를 가진 뉴런이 상호연결되어 있는 (그림 2)와 같다. 각각의 데이터 연결 지점을 노드(node)라고 부르는데, 이 노드는 구조는 없으며 많은 데이터 효율적이나 에 따라 달라질 것이다. 그리고 화살표는 데이터의 이동을 나타낸다. 각각 계층 1은 입력 계층(Input Layer), 계층 2는 은닉 계층(Hidden Layer) 계층 3은 출력 계층(Output Layer)이다. 입력 계층은 뒤 그대로 입력을 받아들이는 계층이다. 이 입력 계층에 가중치와 활성화 함수, 입력을 거쳐 은닉 계층으로 전달한다. 그 후 은닉계층에서는 연산을 거쳐 출력 계층에서 최종 출력의 형태로 나오게 된다. 신경망의 모델 문제를 대신 이러한 것은 아니며 계층의 수나 노드 수는 데이터에 따라 다르게 바뀐다. 이러한 신경망의 모델 혹은 구조를 퍼셉트론(Perceptron)이라고 하는데, 출력 값이 하나인 단층 퍼셉트론과 출력 값이 여러 개인 다층 퍼셉트론으로 나온다.

2.2 활성화 함수와 가중치

뉴런은 입력의 범위로 출력의 범위로 나누지 않아도 된다. 예를 들어 우리가 상대방이 “너의 협력형은 무엇이 나?”라고 질문 했을 때, 우리는 특정 시간 안에 협력형을 탐색할 것이다. 그리고 그 탐색은 테이프에 지급까지 저장하는 학습 데이터로 하며, 유연한 범위라도 하지 못한 것들이 있다. 이렇게 우리를 보는 정확도로 따라 어떤 상황이 될 때 살아하려는 것을 알 수 있다. 마찬가지로 어떤 분류가 Activation Function(활성화 함수)가 바로 활성화 함수(Activation Function)이다.

활성화 함수의 종류로는 tanh, Step Function, ReLU, Maxout, ELU 등 많은 종류가 있지만 다층 퍼셉트론에서 보통 쓰이는 시그모이드 함수(Sigmoid Function)을 사용할 예정이다.

노드에서의 데이터 이동에는 개별적으로 가중치(Weight)가 따라 붙는다. 가중치가 붙는 이유는 이 노드에 대한 가중치를 수치로 매기는 것과 같다고 생각 한다. 그러한 가중지는 선택적 혹은 결정적인 순간에 근거하고, 그 데이터가 중요한지 혹은 신호를 띄고 그렇지 않 은 수록 낮은 신호를 띄 것이다. 이러한 현상은 우리가 한 주제에 대해서 생각할 때 다른 여러 요인들 을 함께 고려하면서 그 정보들의 상호 관련성을 임작해 더욱 정확한 정보로 만들고 한다. 그렇기 때문에 데이터에 대한 가중치가 필요하다.

2.3 행렬곱과 전파법

행렬곱(Matrix Multiplication)은 행렬(Matrix)의 급산 연산이다. 이 연구에서 이러한 데이터실과 가중치 값 들을 표현하는 데 있어서 행렬곱이 중요한 역할이다. 우리 신경망은 신호를 각각의 데이터에 전달(Feed)을 하는데, 그 후 전달해주 연산이 행렬곱의 역할이다.

다시금 (그림 2)을 상기해보면 원쪽에서부터 입력을 받아 계층 1, 2, 3을 거쳐 전달된다. 이렇게 앞으로 신호를 나가주는 방식을 순전파(Forward Propagation)라고 한다. 그런 그러한 순전파와의 방식대로 입력 값을 행렬곱 연산을 해서 신호를 전달하고 활성화 함수를 통해 출력 값을 도출하는 실제 과정의 오차를 구할 수 있다. 그러면 반대로 그 결과 값을 통해서 출력에서 반대 방향으로 가중치에 비례한 오차로 가중치 업데이트(Update)를 해주면 된다. 이러한 방식을 역전파(Backpropagation)라고 한다.

3. 연구방법

본 연구에서의 핵심은 많은 데이터들의 학습시키고자 하는 것인데, 데이터에 대한 근본적인 실행 결과를 필요로 하고 이에 상응하는 데이터 표현 역시 요구된다. 그런 이유에 많은 라이브러리를 참조할 수 있는 Python3를 기본 언어로 사용하고, 처리의 결과를 인터프리터로 바로 할 수 있는 iPython을 사용할 것이다. (필자는 python 3.5.4 version이다.) 참고로 사용하고자 하는 라이브러리가 내장되어 있기 때문에 더욱 편리할 것이다. 현재 코딩은 Anaconda Prompt를 통해 jupyter notebook 명령어를 쓰면 인터프리터로 파일을 실행할 수 있는 웹 브라우저가 열린다. 해당 실행 환경에서 연구를 진행 해보도록 하겠다.

3.1 신경망 초기화

이론으로 살펴봤던 신경망을 클래스로 정의해주고 생성자인 init 함수에 매개 변수로 입력 계층, 은닉 계층, 출력 계층의 노드 개수를 설정을 해준다. 해당 함수에서는 28x28 픽셀의 행렬이니 784 개의 입력 노드와 100개의 은닉 노드 10개의 출력 노드로 초기화한다. 은닉 노드가 100개 이상의 이유는 바로 존재 하지 않다는. 은닉 노드의 수는 결과에 따라 계속 조정하면서 더 나은 결과로 변화할 것이다. 출력 노드는 나타 난 숫자가 10개이며 10개로 나타내고자 했다.
3.2 데이터의 수집과 표현

숫자가 0 부터 9 가지 있다고 했을 때 우리는 여백의 한칸 또는 한 단면에 이 숫자를 표현할 수 있다. 그렇다면 어떻게 연산 처리를 하도록 할 수 있을까? 이미지를 보았을 때 그 이미지에 대한 최소 단위는 아마 한 픽셀(Pixel)일 것이다. 그리고 그 픽셀에는 0 부터 255 까지의 값을 가지는 RGB 색상을 알 수 있을 것이다. 이미지는 각각의 가로와 세로를 가지는 단면이며 그것은 행렬로 나타낼 수 있었다. 또한 그 행렬은 2 차원 배열로 다시 정할 수 있다. 그러한 데이터를 가지고 있는 MNIST 손 글씨 데이터셋 (28x28 pixel csv file)을 이용한 것이다. 추가적으로 데이터의 표현을 위해 matplotlib 라이브러리를 사용하였다.

입력 데이터뿐만 아니라 가중치 값도 행렬을 적용한다. 대신 가중치는 실수로 0.0에서부터 1.0까지의 범위 값을 가진다. 처음에는 임의 값으로 훈련 중에는 오차 계산법을 통하여 가중치의 업데이트가 일어난다.

3.3 행렬의 변환과 계산

연구에서 사용할 28x28 이미지의 정보는 index 0에는 해당 숫자의 값, 1부터 284 index에는 한 pixel에 있는 RGB 값이 나열되어 있다. MNIST에서 제공되는 숫자 데이터를 보기 위해 file open으로 그림과 처리된 데이터를 볼 수 있다. 이러한 28x28 RGB 정보를 2차원 행렬로 바꾸어 주기 위해 numpy 라이브러리를 사용해 array라는 함수를 호출하고 T로 변환시켜준다. 이 행렬로 바꾼 입력 레이스트로 Hidden Layer에 들어가는 신호를 dot 함수를 통해 계산한다. dot 함수는 신호를 연산하기 위해 행렬곱을 해주는 연산 함수이다. 그러하여 계산된 Hidden Input을 activation function 함수에 시그모이드 연산을 대입 해준다. 시그모이드 연산을 하기 위해서는 scipy.special 라이브러리가 사용되고 expit()함수를 호출해 대입하면 된다.

\[
Y = \frac{1}{1 + e^{-x}}
\]

그림 3 시그모이드 수식

같은 방법으로 은닉 계층에서 연산된 값을 출력 계층에 들이갈 때 다시 행렬곱과 활성화 함수를 통한 연산을 거쳐진다. 저장되어 있던 label(index0)의 실제 값과 출력 값을 빠져서 오차를 계산한다. 다음 단계로 오차들을 가중치에 의해 나누어 조정은 한다. Transpose 함수로 개별 계층 간 가중치를 update 시켜 줄 수 있다.

3.4 학습과 성능

신경망에 대한 초기화가 이루어지고, 학습 함수와 젤의 학습이 만들어지게 되면 신경망의 갱체(Instance)를 생성해 데이터를 List로 가져온다. 그 다음에 RGB로 저장된 값을 섞(use)으로 분리해 해서 학습을 시켜 결과 값을 가져온다. 이러한 시도를 준비된 데이터셋으로 실행한다.

해당 실험에 대한 정확도를 알아보기 위해 실제 값과 적합한지 아닌지에 대한 판단 리스트를 만들어서, 인자 선택 1을 더해주고 클릭 경우 0을 더해준다. 구한 결과를 리스트의 합을 사이즈로 나누어서 성능(Performance)을 본다.

4. 연구결과

먼저 데이터가 어떤 값으로 이루어져 있는지 확인하기 위해 파일 open 함수를 통해 데이터 리스트를 확인했다.

(그림 4) 데이터셋 확인

해당 데이터의 길이가 100이라고 나오는 것은 레이블(Label) 즉, 데이터의 개수 100개이란 것이다. 면만해도 값을 보면 5가 있는데 이것이 실제 값이다. 그리고 나머지 부분은 모두 RGB 값으로 이루어져 있는 이미지를 표현한 것이다.

(그림 5) 데이터 이미지 확인

Matplotlib 를 통해 그림처럼 나타내어 이미지를 볼 수 있다. 가로 세로 28픽셀인 것을 확인할 수 있으며 앞서 레이블이 5였던 것을 확인해 사람의 눈으로는 '5'라는 숫자임을 알 수 있다.

간단하게 실제 학습이 되고 있는지 확인하기 위해 10개의 데이터셋으로 시도를 해보았다. 10개의 데이터셋에는 레이블에 '7'이라는 숫자가 있고 run 해본 결과.
10 개의 데이터셋 만으로도 유의미한 결과를 얻을 수 있었다. (그림 6)의 배경 위에서부터 0-9 까지에 대한 정확성이 얼마나 높다는 수준으로 나타내려졌다. 1에 가까운 수치를 끊도록 해당 인덱스에 대한 숫자라고 판단하는 것이다. 0.7112506이라는 수치가 제일 높고 8번째(0,1,2,...9)에 위치해 있으므로 이 신경망이 ‘7’이라는 숫자를 판별한 것이다.

이번에는 100개의 데이터셋을 사용하여 알아보겠습니다. 100개의 데이터셋 중 11번째 레이블인 ‘3’을 판별할 것이다.

그 결과 0.78092344라는 수치가 제일 높은 것으로 이업도 마찬가지로 3이라는 것을 알아맞혔다. 두번째로 높은 수치는 8인데 이는 ‘3’과 ‘8’이 많이 맞아 있기 때문에 나온 것이 아닌가 추측한다. 물론 10 개의 데이터셋도 된 경우가 있어서 처음 100 개의 데이터셋보다는 정확도가 떨어지는 것이 많다. 이는의 레이블들로 여러 번 실험해본 결과 데이터셋이 많으면 많은수록 정확도가 높아진다. 적어도 데이터를 학습시킨다는 목표는 충족시켰던 것 같다. 이번 실험으로 정확도를 측정하는 성능까지 빠르게 했었으나, 아직 진행단계에 있어 미치지 못하였다. 그 점에 대해서는 논의에서 이야기할 것이다.

그리고 다른 한가지로 새만iene 재현된 적은 학습률이 남으면 오히려 판별력이 더 높아지는 양상을 보였다. 새만iene 재현된 것은 학습률이 0에서부터 1까지로 두는데, 보통 0에서 0.3까지가 가장 많은 성공 횟수를 보였다.

5. 결론 및 논의

이번 실험에서 대해서 이론적인 연구의 단계는 많이 나아갔으며, 실제 개발 구현 단계에 있어서는 그만큼 미치지 못하였다. 하지만 적어도 인공 신경망에 있어서 중요한 ‘학습을 하는 과정은 심심치 않게 성공하는 모습을 보였다. 한 가지 궁금증이 풀리지 않는 점은 은닉 노드의 개수를 조정하는데 어떤 의미가 있는지 알기 어렵다는 점이었다. 학습률은 조정시 값의 변화가 유추 가능한 범위 은닉층을 규제한다. 앞서 처음에 인공신경망에 대한 위치가 개수의 저자 시 작했던 연구가 예상보다 아무도 은닉층을 보지 못한 결과가 되지 않았을까 느꼈다. 물론 이미 뇌리 악들을 직접 구현해 모듈화 시켜 사용 했다면 더욱 더 심층적인 연구가 필요할 필요가 있다. 앞으로의 남은 과제는 판별과 동시에 성능을 알려주는 기능과 더 추가한 연구, MNIST 데이터의 아닌 직접 숫자 데이터를 만드는 것이다. 그리고 인공 신경망 같은 경우는 서론에서처럼 여러 분야에서 이용되기 때문에 루즈버리과학에서 구동을 시켜 응용하는 것도 생각하고 있다. 접근하기가 힘들다고 관측이 쉽기 때문이다. 추후에 숫자가 정확히 학습이 된다면 문자의 벡터화(Vectorization) 시켜서 얼마만도 문자의 결과를 가지고도 다른 연구에 조심스레 열두에 두고 있다. 연구의 한계는 시그모이드 함수가 실제 현상에서 활성화 함수로 그대로 사용하는다는 사실이다. 보통 ReLU를 많이 쓰인다고 알려져 있어 ReLU에 대한 저작도 하루 늘리나갈 계획이다. 그러므로 데이터에 회전이 어느 정도 들어가게 되면 성능이 떨어지는 부분에 대해서도 회전각을 고려한 새로운 학습 데이터를 고려한 필요가 있다.

참고문헌
고영홍(2011), 신경회로망과 파이 추론에 의한 필기체 숫자 인식, 한국컴퓨터정보학회 한국컴퓨터정보학회 논문지.
김용일(2014), 인공신경망을 이용한 KOSPI 200 단기에 측에 관한 연구, 국민대학교 비즈니스 IT 전문대학원 식사학위 논문.
신성후(2019), 인공신경망 알고리즘을 활용한 가중 취약지역 분석, 성균관대학교 일반 대학원 석사학위논문.
윤진호(2012), 인공신경망을 이용한 머신러닝의 피로수 명 예측에 관한 연구, 부산대학교 대학원 석사학위 논문.
Tariq Rashid, 신경망 첫걸음, 출판사: 한빛미디어, 2017

MNIST 학습 데이터 모음 [https://git.io/vvSZ1]
MNIST 테스트 데이터 모음 [https://git.io/vvSZP]

(그림 1) [https://terms.naver.com/entry.nhn?docId=830581&cid=42344] & categoryID=42344