Acknowledgement
본 연구는 한국전자통신연구원 연구운영비지원사업의 일환으로 수행되었음. [20ZS1200, 인간 중심의 자율지능시스템 원천기술 연구]
DOI QR Code
운전자가 아닌 자율주행 시스템이 운전을 주도하기 위한 기술의 상용화를 위해 많은 기업이 노력 중이다. 특히 운전자의 안전을 보장하기 위한 운전자와 자율주행 시스템 간의 제어권전환이 중요하다. 운전자의 주행과 관련 없는 행동은 제어권전환 상황에서 운전자를 위험에 빠뜨릴 수 있으므로 제어권전환을 돕기 위한 운전자 모니터링 기술에 관한 많은 연구가 진행되고 있다. 운전자 모니터링 기술은 주로 생체 정보, 차량 정보, 영상을 사용하여 운전자의 상태와 부주의 행동 등을 감지하는 기술이다. 최근 머신 러닝, 딥 러닝을 사용한 영상처리 및 인식 기술 등의 발전으로 영상을 사용한 운전자 모니터링 기술이 활발하게 연구되고 있다. 따라서 본 논문에서는 영상기반 운전자 모니터링 기술 동향에 대해 상세히 기술하였다. 특히 운전자의 부주의 행동 중 졸음은 운전자가 주행 상황을 전혀 인지하지 못하게 할 수 있어 더욱 위험한 행동이다. 따라서 영상기반 운전자 모니터링 기술을 졸음 인식과 그 외의 행동 인식으로 분류하여 동향을 정리하였다.
본 연구는 한국전자통신연구원 연구운영비지원사업의 일환으로 수행되었음. [20ZS1200, 인간 중심의 자율지능시스템 원천기술 연구]