Taeeun Kim¹, Soojong Pak¹, Nicholas P. Konidaris², Niv Drory³, Cynthia S. Froning³, Anthony Hebert², Pavan Bilgi², Guillermo A. Blanc^{2,5}, Alicia E. Lanz², Charles L Hull², Juna A. Kollmeier², Solange Ramirez², Stefanie Wachte²r, Kathryn Kreckel⁴, Eric Pellegrini⁴, Andr'es Almeida⁵, Scott Case⁶, Ross Zhelem⁶, Tobias Feger⁶, Jon Lawrence⁶, Michael Lesser⁷, Tom Herbst⁸, Jose Sanchez-Gallego⁹, Matthew A Bershady¹⁰, Sabyasachi Chattopadhyay¹⁰, Andrew Hauser¹⁰, Michael Smith¹⁰, Marsha J Wolf¹⁰, Renbin Yan¹¹

¹Kyung Hee University
²Carnegie Institution for Science
³University of Texas at Austin
⁴University of Heidelberg
⁵Universidad de La Serena
⁶Australian Astronomical Optics
⁷University of Arizona
⁸Max Planck Institut Fur [~] Astronome
⁹University of Washington
¹⁰University of Kentucky

The Local Volume Mapper (LVM), for the Sloan Digital Sky Survey V, consists of four 16 cm telescopes with three fiber spectrographs in the Las Campanas Observatory in Chile. With the fixed telescopes on optical tables, the Alt-Alt mounted siderostats point and guide targets during spectrograph exposures. We are developing the integrated LVM instrument control software. Considering international travel restrictions caused by the COVID-19 pandemic in 2021, we decided to make a simplified version of siderostat to test the LVM telescope control system in Korea. The prototype siderostat consists of two aluminum flat mirrors, optomechanical housing structures made by aluminum profiles, and the Planewave L-350 mount. We designed the optical mirrors and the optomechanical structure of the siderostat. From structural analysis at various pointing cases, we estimated the tilt misalignments of mirrors within 4 arcsec, which would affect the telescope pointing errors.

[7 AT-08] Preliminary design of control software for SDSS-V Local Volume Mapper Instrument

¹Changgon Kim¹, Tae-geun Ji¹, Hojae Ahn¹, Mingyeong Yang¹, Sumin Lee¹, Taeeun Kim¹, Soojong Pak¹, Nicholas P. Konidaris², Niv Drory³, Cynthia S. Froning³, Anthony Hebert², Pavan Bilgi², Guillermo A. Blanc^{2,5}, Alicia E. Lanz², Charles L Hull², Juna A. Kollmeier², Solange Ramirez², Stefanie Wachter², Kathryn Kreckel⁴, Eric Pellegrini⁴, Andr'es Almeida⁵, Scott Case⁶, Ross Zhelem⁶, Tobias Feger⁶, Jon Lawrence⁶, Michael Lesser⁷, Tom Herbst⁸, Jose Sanchez-Gallego⁹, Matthew A Bershady¹⁰, Sabyasachi Chattopadhyay¹⁰, Andrew Hauser¹⁰, Michael Smith¹⁰, Marsha J Wolf¹⁰, Renbin Yan¹¹ ¹Kyung Hee University ²Carnegie Institution for Science ³University of Texas at Austin ⁴University of Texas at Austin ⁴University of Heidelberg ⁵Universidad de La Serena ⁶Australian Astronomical Optics ⁷University of Arizona ⁸Max Planck Institut Fur [~] Astronome ⁹University of Washington ¹⁰University of Wisconsin-Madison ¹¹University of Kentucky

The Local Volume Mapper(LVM) project in the fifth iteration of the Sloan Digital Sky Survey (SDSS-V) will produce large integral-field spectroscopic survey data to understand the physical conditions of the interstellar medium in the Milky Way, the Magellanic Clouds, and other local-volume galaxies. We are developing the LVM Instrument control software. The architecture design of the software follows a hierarchical structure in which the high-level software packages interact with the low-level and mid-level software and hardware components. We adopt the spiral software development model in which the software evolves by iteration of sequential processes, i.e., software requirement analysis, design, code generation, and testing. This spiral model ensures that even after being commissioned, the software can be revised according to new operational requirements. We designed the software by using the Unified Modeling Language, which can visualize functional interactions in structure diagrams. We plan to use the SDSS software framework CLU for the interaction between components, based on the RabbitMQ that implemented the Advanced Message Queuing Protocol (AMQP).

고천문/ 교육홍보

[구 HE-01] Solar motion described in the Richan lizhi(日躔曆指), the Richan lifa(日躔曆法) and the Richan biao(日躔表) of the Kangxi reign treatises on Calendrical Astronomy, Lixiang kaocheng (曆象考成) (《역상고성》의 <일전역지>, <일전역법>, <일전표>에 기록된 태양의 운동)

Seung-Urn choe^{1,2}, Min-Jeong Kang³, Seulki Kim¹, Sukjoo Kim⁴, Wonmo Suh⁵, Jinhyon Lee⁶, Yong Bok