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Supernovae classes  have been defined
phenomenologically, based on spectral features
and time series data, since the specific details of
the physics of the different explosions remain
unrevealed. However, the number of these classes
is increasing as objects with new features are
observed, and the next generation of large-surveys
will only bring more variety to our attention. We
apply the machine learning technique of
multi-label classification to the spectra of
supernovae. By measuring the probabilities of
specific features or ‘tags' in the supernova
spectra, we can compress the information from a
specific object down to that suitable for a human
or database scan, without the need to directly
assign to a reductive ‘class'. We wuse logistic
regression to assign tag probabilities, and then a
feed-forward neural network to filter the objects
into the standard set of classes, based solely on
the tag probabilities. We present STag, a software
package that can compute these tag probabilities
and make spectral classifications.
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We present solar event auto detection using
deep-learning-based object detection algorithms
and DeepSDO event dataset. DeepSDO event
dataset is a new detection dataset with bounding
boxed as ground-truth for three solar event
(coronal holes, sunspots and prominences)
features using Solar Dynamics Observatory data.
To access the reliability of DeepSDO event dataset,
we compared to HEK data. We train two
representative object detection models, the Single
Shot MultiBox Detector (SSD) and the Faster
Region-based  Convolutional Neural Network
(R-CNN) with DeepSDO event dataset. We
compared the performance of the two models for
three solar events and this study demonstrates
that deep learning-based object detection can
successfully detect multiple types of solar events.
In addition, we provide DeepSDO event dataset for
further achievements event detection in solar
physics.
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Recently a multilayer spectral inversion (MLSI)
model has been proposed to infer the physical
parameters of plasmas in the solar chromosphere.
The inversion solves a three-layer radiative
transfer model using the strong absorption line
profiles, H alpha and Ca II 8542 A, taken by the
Fast Imaging Solar Spectrograph (FISS). The model
successfully provides the physical plasma
parameters, such as source functions, Doppler
velocities, and Doppler widths in the layers of the
photosphere to the chromosphere. However, it is
quite expensive to apply the MLSI to a huge
number of line profiles. For example, the
calculating time is an hour to several hours
depending on the size of the scan raster. We apply



