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ABSTRACT 

Homomorphic Encryption (HE) schemes have been recently growing as a reliable solution to preserve users’ 

information owe to maintaining and operating the user data in the encrypted state. In addition to that, several 

Neural Networks models merged with HE schemes have been developed as a prospective tool for privacy-

preserving machine learning. Those mentioned works demonstrated that it is possible to match the accuracy of 

non-encrypted models but there is always a trade-off in the computation time. In this work, we evaluate the 

implementation of CKKS HE scheme operations over the layers of a LeNet5 convolutional inference model, 

however, owing to the limitations of the evaluation environment, the scope of this work is not to develop a 

complete LeNet5 encrypted model. The evaluation was performed using the MNIST dataset with Microsoft SEAL 

(MSEAL) open-source homomorphic encryption library ported version on Python (PyFhel). The behavior of the 

encrypted model, the limitations faced and a small description of related and future work is also provided. 

 

1. Introduction 

The privacy-preserving issue is one of the most critical 

problems to solve for machine learning applications, along 

with that, Homomorphic encryption (HE) has arisen as an 

appropriate tool to ensure strong security in the 

cryptographic sense and comply with the communication's 

security approach. HE allows data to be processed, manage, 

and to perform different calculations in an encrypted state, 

which means that our information is never exposed during 

the transmission process.  

The application of HE to Convolutional Neural Network 

[1] has been researched much until now, however, some 

limitations have also been found such as the high difficulty 

of evaluating the popular activation functions like ReLU, 

sigmoid, leaky ReLU, and ELU.  Throughout recent years, 

several HE schemes have been developing according to 

different computation models, such as Brakerski-Fan-

Vercauteren (BFV) scheme, Truly Fully Homomorphic 

Encryption (TFHE) or Cheon-Kim-Kim-Song (CKKS) 

scheme. The CKKS scheme, which supports homomorphic 

addition and multiplication, has been raised as a promising 

tool for CNN-HE evaluations since it can deal with 

encrypted real numbers. 

Furthermore, LeNet-5 is a simple convolutional neural 

feed-forward network whose artificial neurons can respond 

to a part of the surrounding cells in the coverage range and 

perform well in large-scale image processing applications. 

Although nowadays LeNet-5 is not widely used anymore, it 

was the emergence of CNN (Convolutional Neural 

Networks) and defines the basic components of this kind of 

network as well as being the foundation of the further-

developed different types of CNN. On account of the 

previous reasons, LeNet-5 is the best candidate to evaluate 

the behaviors of inference models in an encrypted state  

This study is focused on the behavior of a basic LeNet5 

CNN model trained and tested with MNIST dataset in the 

encrypted state using CKKS HE over on the convolution 

operations, so we are not evaluating a complete Neural 

Network. It is important to remark that this study is part of 

our current research, which means that the scope of this work 

is only providing a comparison with the normal "no 

encrypted" state of the Lenet-5 model and not building up a 

complete LeNet5-CKKS encrypted model. All the 

implementations were performed on a Python v3.7 

environment using the Python ported version of MSEAL 

library called PyFhel.  

 

2. CNN and CKKS-HE Schemes 

2.1 LeNet5 Inference Model 

LeNet5 is one of the earliest CNNs developed around 

1998 by Yann LeCun and others [2]. Originally was used for 

the recognition of handwritten characters but as the years 

went by, it started to be used in image processing 

applications. The architecture of LeNet5 is shown in the 

figure below: 

 

(Fig 1) LeNet 5 Architecture. 
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LeNet5 is composed of five layers in total, two convolutional 

and three fully connected layers. This model accepts as input 

a greyscale image of 32x32, so the input image should 

contain just one channel. After this, the first convolutional 

layer which has a filter size of 5X5 reduces the width and 

height of the input image while increasing the depth. The 

output would be 28x28x6. After this, pooling is applied to 

decrease the feature map by half, i.e., 14x14x6. The same 

filter size (5x5) with 16 filters is now applied to the output 

followed by a pooling layer. After this, a convolutional layer 

of size 5x5 with 120 filters is applied to flatten the feature 

map to 120 values. Then comes the first fully connected layer, 

with 84 neurons. Finally, we have the output layer which has 

10 output neurons. 

  

2.2 CKKS-HE Scheme 

Unlike other HE schemes, the CKKS scheme supports 

approximate arithmetic over complex numbers [3]. The main 

idea behind this is to include an encryption noise as part of 

the error occurring during approximate computations. That 

means that an encryption c of message m by the secret key sk 

will have a decryption structure of the form {c, sk} = m + e 

(mod q) where e is a small error inserted to guarantee the 

security of hardness assumptions such as the learning with 

errors (LWE) and the ring- LWE (RLWE) problems. 

CKKS always maintains the decryption structure small 

enough compared to the ciphertext modulus for 

homomorphic operations. However, the bit size of the 

message increases exponentially with the depth of a circuit 

without rounding. To address this problem, CKKS suggests a 

new technique -called rescaling- that manipulates the 

message of ciphertext. It reduces the size of ciphertext 

modulus and removes the error located in the LSBs of the 

messages.  

  Owe to the previous characteristics described, CKKS is a 

good candidate to test out its behavior over the different 

layers of a Convolutional Neural Network, especially over 

the activation functions such as ReLu or Sigmoid. 

 

2.3 CNN-HE Scheme 

 

(Fig 2) Diagram flow of an encrypted CNN model. 

The main idea of merging a CNN with HE scheme is to 

change the normal state of the model to an encrypted model. 

Thus, the encrypted model will perform encrypted 

computation over the data, preserving personal information 

privacy. Fig 3 shows a basic diagram flow on how an 

encrypted CNN model should work. The goal is to preserve 

the encrypted results equal to the no-encrypted results. It is 

also important to remark, that up to this date, encrypted 

operations take longer to perform compared to normal 

operations, which means, there is always a trade-off between 

the accuracy and computation time. 

 

3. Evaluating LeNet5 layers with CKKS operations 

In order to perform the goal of this study, we first trained a 

regular LeNet5 model with the MNISST dataset, followed by 

extracting the weights and bias of the model, encrypting such 

weights and bias using PyFhel functions, and after that, 

performing some homomorphic operations to decrypt the 

results and test out the correct functionality of PyFhel 

functions. Finally, we tried to build up the same inference 

model but this time including the PyFhel homomorphic 

operations over the convolution layers of the LeNet5 model.  

Before evaluating the LENET5-CKKS inference model, 

as stated before, we first trained and tested a normal LeNet5 

model on Python using the Pytorch and Torchvision tools. 

The reason why Python was selected as the programming 

language of this study is because of its simplicity when it 

comes to working with Neural Network applications, we are 

aware that Python presents some disadvantages compared to 

other programming languages but for the sake of this study is 

a convenient tool to use. Likewise, MNIST dataset was used 

for the training data, and the model was evaluated using 

10,000 images from the same MNIST dataset. As expected, 

the trained model obtained a high accuracy of 98.79 percent. 

The trained model and its layers are shown as follows: 

 

 

(Fig 3) Trained LeNet 5 model. 

Following that, the extraction of the weights and bias can 

be easily performed with the PyTorch tools on Python, 

however, in order to encrypt it, it was compulsory to convert 

the weights and bias into a numpy array because the PyFhel 

encryption and decryption operations only work with numpy 

arrays, however, this made the work easier because it is faster 

and more convenient to evaluate the homomorphic 

operations with numpy arrays. After encrypting the data with 

PyFhel functions, it generates a numpy array with the 

following structure: 

 

 

(Fig 4) Structure of a PyFhel encrypted array. 

In Fig 3. it is observable how the encrypted data remains 

as a numpy array, however, the elements of the array remain 

encrypted with a little bit of noise budget as the CKKS 
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theory states. To evaluate how the PyFhel encryption works, 

we simulate the sending process of the data (bytes) over a toy 

network using the Python library "pickles". With the 

"pickles" library acting as a network, the encrypted data 

remains the same after receiving it, consequently, 

computation with homomorphic addition and multiplication 

is allowed to be performed with the encrypted data. The 

PyFhel library allows us to decrypt the results of the addition 

and multiplication, which in this case will be a float number 

that is coming from the previously encrypted weights/bias.  

Having tested that the LeNet5 model is working as well as 

the functionality of the homomorphic encryption library, the 

next approach is to merge the HE operations over the LeNet5 

layers and evaluate the behavior and accuracy of the new 

inference model.  

While performing this study, we faced two big limitations 

when it comes to evaluating the activation and pooling layers 

of the model. First, the activation layer and pooling layer 

have a great influence on the model accuracy but they consist 

mostly of comparative operations, which represents a 

limitation for this study because CKKS directly supports 

only homomorphic addition and multiplication. Thus, the 

comparison operation is replaced using an approximate 

polynomial. If we evaluate the mentioned previous layers by 

themselves using the approximate polynomials, a decrease in 

the accuracy by almost 20% is noticeable. The second 

limitation is a Pytorch-PyFhel library incompatibility, this 

limitation will be explained in detail in the next section. 

Due to the previous limitations, testing a complete LeNet5 

encrypted model using Python and PyFhel library is 

impossible. Nonetheless, we were able to use the CKKS 

PyFhel operations over the convolution layers of the model.  

 

4. Results 

During the process of testing the CKKS-Inference model 

we came up with some limitations: The PyFhel library 

transforms the encrypted data into a numpy array with 

datatype = object, and to the best of your knowledge, there is 

no existing solution to transform a numpy array with 

datatype object to a Pytorch Tensor, this is a limitation 

because the LeNet5 model on Pytorch is computed by using 

Tensors. In addition to that, the popular activation functions 

are usually non-arithmetic functions, such as ReLU, owe to 

that, we cannot evaluate CKKS arithmetic operations without 

reducing the accuracy significantly. Keeping in mind those 

two limitations, as explained in the previous section, the 

approach for this study is encrypting the data only during the 

convolution layers of the LeNet5 model, doing this we can 

avoid dealing with PyFhel-Pytorch incompatibility as well 

with the ReLu non-arithmetic limitations. The evaluation 

environment was an Intel Core i7-9750H and the GPU 

NVidia GTX1650. 

Even though the encryption of the data is taken into 

account on the convolution layers, the output of the model 

remains as an encrypted PyFhel numpy array. Next, we 

performed the decryption of the data just before testing it, in 

addition to that, a random encrypted PyFhel numpy array 

was also generated, with the goal of performing some 

multiplication and addition operations over the encrypted 

output of the model and verifying that we can perform 

computation over the encrypted data. Finally, we decrypted 

the data again and tested out the model again, we called our 

model LeNet5-CKKs just for easy reference, but it is 

important to remember that is not a complete CNN encrypted 

model. The results are shown as follows: 

 

<Table 1> Encrypted and non-encrypted model results 
Measurement LeNet5 LeNet5-CKKS 

Accuracy 98% 95% 
Computing Time (s) 9  420  

 

The previous table shows the results of the evaluation of 

the proposed model for this study. There is no remarkable 

trade-off between the accuracy of the two models, however, 

the computation time is higher in the encrypted model 

(LeNet5-CKKS). We assume that the reason behind this is 

that CKKS struggle with comparison operations over the 

convolutional calculations. Moreover, due to the limitations 

of Python libraries we were not able to test out all the layers 

from the model, but it can be also assumed that the 

computation could be higher with a completed evaluated 

model. Nonetheless, we also remark that this is a research in 

progress, so for future work, it is expected to continue testing 

different approaches 

 

5. Related and Future Work 

A vast amount of research is currently in process 

regarding Deep Learning Homomorphic encrypted models, 

using not CKKS scheme but also other HE schemes such as 

TFHE. TFHE has shown lower computation time compared 

to CKKS, on the other hand, CKKS has lower accuracy 

compared to TFHE, which makes both schemes have 

disadvantages. Furthermore, the mentioned works have 

demonstrated that by using different encrypted CNN with 

different schemes it is possible to match the accuracy of a 

non-encrypted model, especially using the MNIST dataset 

[4][5]. To the best of our knowledge, none of the previous 

works was evaluated over a LeNet5 model. The following 

table summarizes the results: 

<Table 2> Related work accuracy results 
Paper Name Dataset Accuracy (%) 

Encrypted (No encrypted) 
Ngraph-HE MNIST 96.9 (99) 

CIFAR-10 62.2 (89) 

CHET MNIST 98.5 (99) 

CIFAR-10 81.5 (90) 

 

The previous table shows that it is possible to achieve the 

same level of accuracy as a non-encrypted model, especially 

when using the MNIST dataset, the main problem relies on 

reducing the computing time. The following table shows the 

advantages and disadvantages of the previously cited HE 

schemes when using them in CNN models: 

 <Table 3> Pros and Cons for HE schemes 
HE scheme Advantages Disadvantages 

TFHE Lower computation 

times and works better 

with comparison 

operations 

Struggles with 

homomorphic 

operations 

CKKS Better results for 

homomorphic 

operations 

Accuracy is 

lower 
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This study is just a part of the current research being 

carried on, henceforth, for future work, the focus of our 

approach will be reducing the computation part of the 

encrypted models. There already exists a library [6] that can 

support bridges between various schemes of HE -including 

CKKS and TFHE- which could be a good start to developing 

a framework that can allow us to change from different HE 

schemes inside an encrypted CNN model. The approach of 

the framework is shown in the following figure: 

 

(Fig 5) Framework for switching CNN between different HE 

schemes 

Fig 5. shows the approach of the proposed framework. 

The input of the framework should be a trained AI model and 

the output another AI model with homomorphic encryption 

that performs exactly the same as the input. This means, that 

if the input model has low accuracy, the encrypted model 

will remain the same accuracy. The development strategy is 

switching between different HE schemes, for example, using 

TFHE for comparative operations and CKKS for other 

operations like homomorphic addition and multiplication. 

Doing this, the main goal is to avoid the performance load 

that causes computation time to increase. Finally, this 

framework should allow an automatic parameter selection 

considering the model structure and data type in order to be a 

general solution for all models and datasets.  

 

6. Conclusion 

It was demonstrated that performing the CKKS HE 

scheme over the convolution layer of a LeNet5 model can 

match the accuracy of a non-encrypted LeNet5 CNN model, 

however, there is always a big trade-off in terms of 

computation time. In addition to that, we remarked on the 

limitations of using CKKS on a CNN model such as not 

being able to evaluate directly the activation functions owing 

to their non-arithmetic nature. We also faced some 

limitations due to the incompatibility of the PyFhel library 

with Pytorch tensor. Nonetheless, this work is just a part of 

the outgoing research, so we will continue doing experiments 

with popular models and datasets and working on the 

implementation of a framework that allows change between 

different HE schemes in an encrypted CNN model. 
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