

A STUDY OF USING CKKS HOMOMORPHIC

ENCRYPTION OVER THE LAYERS OF A

CONVOLUTIONAL NEURAL NETWORK MODEL

Sebastian Soler Castaneda1, Kevin Nam1, Youyeon Joo1, and Yunheung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University

Semiconductor Research Center (ISRC), Seoul National University

ABSTRACT

Homomorphic Encryption (HE) schemes have been recently growing as a reliable solution to preserve users’

information owe to maintaining and operating the user data in the encrypted state. In addition to that, several

Neural Networks models merged with HE schemes have been developed as a prospective tool for privacy-

preserving machine learning. Those mentioned works demonstrated that it is possible to match the accuracy of

non-encrypted models but there is always a trade-off in the computation time. In this work, we evaluate the

implementation of CKKS HE scheme operations over the layers of a LeNet5 convolutional inference model,

however, owing to the limitations of the evaluation environment, the scope of this work is not to develop a

complete LeNet5 encrypted model. The evaluation was performed using the MNIST dataset with Microsoft SEAL

(MSEAL) open-source homomorphic encryption library ported version on Python (PyFhel). The behavior of the

encrypted model, the limitations faced and a small description of related and future work is also provided.

1. Introduction

The privacy-preserving issue is one of the most critical

problems to solve for machine learning applications, along

with that, Homomorphic encryption (HE) has arisen as an

appropriate tool to ensure strong security in the

cryptographic sense and comply with the communication's

security approach. HE allows data to be processed, manage,

and to perform different calculations in an encrypted state,

which means that our information is never exposed during

the transmission process.

The application of HE to Convolutional Neural Network

[1] has been researched much until now, however, some

limitations have also been found such as the high difficulty

of evaluating the popular activation functions like ReLU,

sigmoid, leaky ReLU, and ELU. Throughout recent years,

several HE schemes have been developing according to

different computation models, such as Brakerski-Fan-

Vercauteren (BFV) scheme, Truly Fully Homomorphic

Encryption (TFHE) or Cheon-Kim-Kim-Song (CKKS)

scheme. The CKKS scheme, which supports homomorphic

addition and multiplication, has been raised as a promising

tool for CNN-HE evaluations since it can deal with

encrypted real numbers.

Furthermore, LeNet-5 is a simple convolutional neural

feed-forward network whose artificial neurons can respond

to a part of the surrounding cells in the coverage range and

perform well in large-scale image processing applications.

Although nowadays LeNet-5 is not widely used anymore, it

was the emergence of CNN (Convolutional Neural

Networks) and defines the basic components of this kind of

network as well as being the foundation of the further-

developed different types of CNN. On account of the

previous reasons, LeNet-5 is the best candidate to evaluate

the behaviors of inference models in an encrypted state

This study is focused on the behavior of a basic LeNet5

CNN model trained and tested with MNIST dataset in the

encrypted state using CKKS HE over on the convolution

operations, so we are not evaluating a complete Neural

Network. It is important to remark that this study is part of

our current research, which means that the scope of this work

is only providing a comparison with the normal "no

encrypted" state of the Lenet-5 model and not building up a

complete LeNet5-CKKS encrypted model. All the

implementations were performed on a Python v3.7

environment using the Python ported version of MSEAL

library called PyFhel.

2. CNN and CKKS-HE Schemes

2.1 LeNet5 Inference Model

LeNet5 is one of the earliest CNNs developed around

1998 by Yann LeCun and others [2]. Originally was used for

the recognition of handwritten characters but as the years

went by, it started to be used in image processing

applications. The architecture of LeNet5 is shown in the

figure below:

(Fig 1) LeNet 5 Architecture.

ASK 2022 학술발표대회 논문집 (29권 1호)

- 161 -

LeNet5 is composed of five layers in total, two convolutional

and three fully connected layers. This model accepts as input

a greyscale image of 32x32, so the input image should

contain just one channel. After this, the first convolutional

layer which has a filter size of 5X5 reduces the width and

height of the input image while increasing the depth. The

output would be 28x28x6. After this, pooling is applied to

decrease the feature map by half, i.e., 14x14x6. The same

filter size (5x5) with 16 filters is now applied to the output

followed by a pooling layer. After this, a convolutional layer

of size 5x5 with 120 filters is applied to flatten the feature

map to 120 values. Then comes the first fully connected layer,

with 84 neurons. Finally, we have the output layer which has

10 output neurons.

2.2 CKKS-HE Scheme

Unlike other HE schemes, the CKKS scheme supports

approximate arithmetic over complex numbers [3]. The main

idea behind this is to include an encryption noise as part of

the error occurring during approximate computations. That

means that an encryption c of message m by the secret key sk

will have a decryption structure of the form {c, sk} = m + e

(mod q) where e is a small error inserted to guarantee the

security of hardness assumptions such as the learning with

errors (LWE) and the ring- LWE (RLWE) problems.

CKKS always maintains the decryption structure small

enough compared to the ciphertext modulus for

homomorphic operations. However, the bit size of the

message increases exponentially with the depth of a circuit

without rounding. To address this problem, CKKS suggests a

new technique -called rescaling- that manipulates the

message of ciphertext. It reduces the size of ciphertext

modulus and removes the error located in the LSBs of the

messages.

 Owe to the previous characteristics described, CKKS is a

good candidate to test out its behavior over the different

layers of a Convolutional Neural Network, especially over

the activation functions such as ReLu or Sigmoid.

2.3 CNN-HE Scheme

(Fig 2) Diagram flow of an encrypted CNN model.

The main idea of merging a CNN with HE scheme is to

change the normal state of the model to an encrypted model.

Thus, the encrypted model will perform encrypted

computation over the data, preserving personal information

privacy. Fig 3 shows a basic diagram flow on how an

encrypted CNN model should work. The goal is to preserve

the encrypted results equal to the no-encrypted results. It is

also important to remark, that up to this date, encrypted

operations take longer to perform compared to normal

operations, which means, there is always a trade-off between

the accuracy and computation time.

3. Evaluating LeNet5 layers with CKKS operations

In order to perform the goal of this study, we first trained a

regular LeNet5 model with the MNISST dataset, followed by

extracting the weights and bias of the model, encrypting such

weights and bias using PyFhel functions, and after that,

performing some homomorphic operations to decrypt the

results and test out the correct functionality of PyFhel

functions. Finally, we tried to build up the same inference

model but this time including the PyFhel homomorphic

operations over the convolution layers of the LeNet5 model.

Before evaluating the LENET5-CKKS inference model,

as stated before, we first trained and tested a normal LeNet5

model on Python using the Pytorch and Torchvision tools.

The reason why Python was selected as the programming

language of this study is because of its simplicity when it

comes to working with Neural Network applications, we are

aware that Python presents some disadvantages compared to

other programming languages but for the sake of this study is

a convenient tool to use. Likewise, MNIST dataset was used

for the training data, and the model was evaluated using

10,000 images from the same MNIST dataset. As expected,

the trained model obtained a high accuracy of 98.79 percent.

The trained model and its layers are shown as follows:

(Fig 3) Trained LeNet 5 model.

Following that, the extraction of the weights and bias can

be easily performed with the PyTorch tools on Python,

however, in order to encrypt it, it was compulsory to convert

the weights and bias into a numpy array because the PyFhel

encryption and decryption operations only work with numpy

arrays, however, this made the work easier because it is faster

and more convenient to evaluate the homomorphic

operations with numpy arrays. After encrypting the data with

PyFhel functions, it generates a numpy array with the

following structure:

(Fig 4) Structure of a PyFhel encrypted array.

In Fig 3. it is observable how the encrypted data remains

as a numpy array, however, the elements of the array remain

encrypted with a little bit of noise budget as the CKKS

ASK 2022 학술발표대회 논문집 (29권 1호)

- 162 -

theory states. To evaluate how the PyFhel encryption works,

we simulate the sending process of the data (bytes) over a toy

network using the Python library "pickles". With the

"pickles" library acting as a network, the encrypted data

remains the same after receiving it, consequently,

computation with homomorphic addition and multiplication

is allowed to be performed with the encrypted data. The

PyFhel library allows us to decrypt the results of the addition

and multiplication, which in this case will be a float number

that is coming from the previously encrypted weights/bias.

Having tested that the LeNet5 model is working as well as

the functionality of the homomorphic encryption library, the

next approach is to merge the HE operations over the LeNet5

layers and evaluate the behavior and accuracy of the new

inference model.

While performing this study, we faced two big limitations

when it comes to evaluating the activation and pooling layers

of the model. First, the activation layer and pooling layer

have a great influence on the model accuracy but they consist

mostly of comparative operations, which represents a

limitation for this study because CKKS directly supports

only homomorphic addition and multiplication. Thus, the

comparison operation is replaced using an approximate

polynomial. If we evaluate the mentioned previous layers by

themselves using the approximate polynomials, a decrease in

the accuracy by almost 20% is noticeable. The second

limitation is a Pytorch-PyFhel library incompatibility, this

limitation will be explained in detail in the next section.

Due to the previous limitations, testing a complete LeNet5

encrypted model using Python and PyFhel library is

impossible. Nonetheless, we were able to use the CKKS

PyFhel operations over the convolution layers of the model.

4. Results

During the process of testing the CKKS-Inference model

we came up with some limitations: The PyFhel library

transforms the encrypted data into a numpy array with

datatype = object, and to the best of your knowledge, there is

no existing solution to transform a numpy array with

datatype object to a Pytorch Tensor, this is a limitation

because the LeNet5 model on Pytorch is computed by using

Tensors. In addition to that, the popular activation functions

are usually non-arithmetic functions, such as ReLU, owe to

that, we cannot evaluate CKKS arithmetic operations without

reducing the accuracy significantly. Keeping in mind those

two limitations, as explained in the previous section, the

approach for this study is encrypting the data only during the

convolution layers of the LeNet5 model, doing this we can

avoid dealing with PyFhel-Pytorch incompatibility as well

with the ReLu non-arithmetic limitations. The evaluation

environment was an Intel Core i7-9750H and the GPU

NVidia GTX1650.

Even though the encryption of the data is taken into

account on the convolution layers, the output of the model

remains as an encrypted PyFhel numpy array. Next, we

performed the decryption of the data just before testing it, in

addition to that, a random encrypted PyFhel numpy array

was also generated, with the goal of performing some

multiplication and addition operations over the encrypted

output of the model and verifying that we can perform

computation over the encrypted data. Finally, we decrypted

the data again and tested out the model again, we called our

model LeNet5-CKKs just for easy reference, but it is

important to remember that is not a complete CNN encrypted

model. The results are shown as follows:

<Table 1> Encrypted and non-encrypted model results
Measurement LeNet5 LeNet5-CKKS

Accuracy 98% 95%
Computing Time (s) 9 420

The previous table shows the results of the evaluation of

the proposed model for this study. There is no remarkable

trade-off between the accuracy of the two models, however,

the computation time is higher in the encrypted model

(LeNet5-CKKS). We assume that the reason behind this is

that CKKS struggle with comparison operations over the

convolutional calculations. Moreover, due to the limitations

of Python libraries we were not able to test out all the layers

from the model, but it can be also assumed that the

computation could be higher with a completed evaluated

model. Nonetheless, we also remark that this is a research in

progress, so for future work, it is expected to continue testing

different approaches

5. Related and Future Work

A vast amount of research is currently in process

regarding Deep Learning Homomorphic encrypted models,

using not CKKS scheme but also other HE schemes such as

TFHE. TFHE has shown lower computation time compared

to CKKS, on the other hand, CKKS has lower accuracy

compared to TFHE, which makes both schemes have

disadvantages. Furthermore, the mentioned works have

demonstrated that by using different encrypted CNN with

different schemes it is possible to match the accuracy of a

non-encrypted model, especially using the MNIST dataset

[4][5]. To the best of our knowledge, none of the previous

works was evaluated over a LeNet5 model. The following

table summarizes the results:

<Table 2> Related work accuracy results
Paper Name Dataset Accuracy (%)

Encrypted (No encrypted)
Ngraph-HE MNIST 96.9 (99)

CIFAR-10 62.2 (89)

CHET MNIST 98.5 (99)

CIFAR-10 81.5 (90)

The previous table shows that it is possible to achieve the

same level of accuracy as a non-encrypted model, especially

when using the MNIST dataset, the main problem relies on

reducing the computing time. The following table shows the

advantages and disadvantages of the previously cited HE

schemes when using them in CNN models:

 <Table 3> Pros and Cons for HE schemes
HE scheme Advantages Disadvantages

TFHE Lower computation

times and works better

with comparison

operations

Struggles with

homomorphic

operations

CKKS Better results for

homomorphic

operations

Accuracy is

lower

ASK 2022 학술발표대회 논문집 (29권 1호)

- 163 -

This study is just a part of the current research being

carried on, henceforth, for future work, the focus of our

approach will be reducing the computation part of the

encrypted models. There already exists a library [6] that can

support bridges between various schemes of HE -including

CKKS and TFHE- which could be a good start to developing

a framework that can allow us to change from different HE

schemes inside an encrypted CNN model. The approach of

the framework is shown in the following figure:

(Fig 5) Framework for switching CNN between different HE

schemes

Fig 5. shows the approach of the proposed framework.

The input of the framework should be a trained AI model and

the output another AI model with homomorphic encryption

that performs exactly the same as the input. This means, that

if the input model has low accuracy, the encrypted model

will remain the same accuracy. The development strategy is

switching between different HE schemes, for example, using

TFHE for comparative operations and CKKS for other

operations like homomorphic addition and multiplication.

Doing this, the main goal is to avoid the performance load

that causes computation time to increase. Finally, this

framework should allow an automatic parameter selection

considering the model structure and data type in order to be a

general solution for all models and datasets.

6. Conclusion

It was demonstrated that performing the CKKS HE

scheme over the convolution layer of a LeNet5 model can

match the accuracy of a non-encrypted LeNet5 CNN model,

however, there is always a big trade-off in terms of

computation time. In addition to that, we remarked on the

limitations of using CKKS on a CNN model such as not

being able to evaluate directly the activation functions owing

to their non-arithmetic nature. We also faced some

limitations due to the incompatibility of the PyFhel library

with Pytorch tensor. Nonetheless, this work is just a part of

the outgoing research, so we will continue doing experiments

with popular models and datasets and working on the

implementation of a framework that allows change between

different HE schemes in an encrypted CNN model.

7. Acknowledgement

This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korean

government(MSIT) (NRF-2020R1A2B5B03095204) and the

BK21 FOUR program of the Education and Research

Program for Future ICT Pioneers, Seoul National University

in 2022

References

[1] J. -W. Lee et al., "Privacy-Preserving Machine Learning

with Fully Homomorphic Encryption for Deep Neural

Network," IEEE Access, vol. 10, p 30039 – 30054, 2022

[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-

based learning applied to document recognition,"

Proceedings of the IEEE, vol. 86, p 2278-2324, 1998

[3] Cheon, Jung & Kim, Andrey & Kim, Miran & Song,

Yongsoo. “Homomorphic Encryption for Arithmetic of

Approximate Numbers”, Advances in Cryptology,

ASIACRYPT, p 409-437, 2017.

[4] Fabian Boemer, Anamaria Costache, Rosario Cammarota,

and Casimir Wierzynski. “NGraph-HE2: A High Throughput

Framework for Neural Network Inference on Encrypted

Data”, WAHC'19: Proceedings of the 7th ACM Workshop on

Encrypted Computing & Applied Homomorphic

Cryptography, p 45-56, 2019

[5] Dathathri, Roshan & Saarikivi, Olli & Chen, Hao &

Laine, Kim & Lauter, Kristin & Maleki, Saeed & Musuvathi,

Madanlal & Mytkowicz, Todd, “CHET: an optimizing

compiler for fully-homomorphic neural network inferencing”,

PLDI 2019: Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, p 142-156, 2019

[6] Boura, Christina & Gama, Nicolas & Georgieva, Mariya

& Jetchev, Dimitar, “CHIMERA: Combining ring-LWE

based fully homomorphic encryption schemes. Journal of

Mathematical Cryptology”, Journal of Mathematical

Cryptology, 2020.

ASK 2022 학술발표대회 논문집 (29권 1호)

- 164 -

