Annual Conference of KIPS

KIPS KIPS

Drowsiness Classification using Convolutional Neural Network based on Electroencephalography Signals

[†] Co-first author , ^{*} Corresponding author

Seong-Hyun Yu¹, Hyeong-Yeong Park¹, Euijong Lee¹, Ji-Hoon Jeong^{1,*}

¹Department of Computer Science, Chungbuk National University

Introduction

- Goals
 - Binary classification of drowsiness states and alert states using electroencephalogram(EEG) signals
- Motivation
 - Detection drowsiness in driving environments was mostly achieved through visual technology-based cameras [1]
 - The mental state of the general public can be detected based on neurophysiological signals
- ◆ Related Works

Fig. 1. A preliminary study on drowsiness based on EEG [1]

Experimental Protocol and Environment

- ◆ Experimental Setup
 - Six healthy subjects (S1-S6, 5 males and 1female, aged 28.5(±3)), participated in our experiment
 - The day before the experiment, we asked subjects if they had consumed alcohol and coffee, and if they had slept more than 7 hours

Fig 2. Experimental environment for EEG data

- ◆ Experimental Paradigm
 - Drowsiness (1 hr.), Rest (< 10 s)
 - Subjects entered within 10 seconds of hearing a beeping sound, as measured by the KSS value

Fig 3. Experimental paradigm for data of drowsiness

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSTI) (No.2019-0-00231, Development of artificial intelligence based video security technology and systems for public infrastructure safety and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1G1AID1097111).

Proposed Method and Evaluation

- ◆ Specification of proposed CNN
 - ➤ Layers: 7
 - ➤ Epoch: 50
 - >Activation function: ELU*

Fig 4. Structure of the proposed CNN

- Fig 6 shows the confusion matrices for binary classification using proposed CNN* and DNN*
 - Proposed CNN, the true positive rate of Drowsy and Alert state were 84.6% and 50%, respectiv ely
 - > DNN, the true positive rates of Drowsy state and Alert state were 69.2% and 16.7%, resp ectively

Proposed-CNN DNN

Fig 6. Confusion matrices of classification two mental states

Discussion and Conclusion

- Presenting a drowsiness experiment in the general population using physiological signals
- By conducting an experiment under a driving environment, more accurate information about the driver's mental state can be obtained

References

1) J.-H. Jeong, B.-W. Yu, D.-H. Lee, S.-W. Lee, "Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Conv olutional Bidirectional LSTM Network Using Electroenceph alography Signals," *Brain Sci.*, Vol. 9, No. 12, 2019, pp. 348.

