Brain Tumor X(BTX): CNN 모델을 활용한 뇌종양 진단 및 분류에 관한 연구

강홍구¹, 양희규¹, 리덕타이², 추현승^{1,2,3*}
¹성균관대학교 수퍼인텔리전스학과
²성균관대학교 소프트웨어학과
³성균관대학교 전자전기컴퓨터공학과
{honggu6851, huigyu, ldtai84, choo}@skku.edu

A Study on Brain Tumor Diagnosis and Classification using CNN Model: BTX

Honggu Kang¹, Huigyu Yang¹, Duc-Tai Le², Hyunseung Choo^{1,2,3*}

¹Dept. of Superintelligence, Sungkyunkwan University

²College of Computing and Informatics, Sungkyunkwan University

³Dept. of Electrical and Computer Engineering, Sungkyunkwan University

요 익

뇌종양은 인체에 발생하는 여러 종양 중 세 번째로 많이 나타난다. 뇌종양 환자 수는 지속해서 증가하고 있으며, 별도의 예방법이 존재하지 않아 빠른 진단 및 종양 종류에 따른 치료가 매우 중요하다. 현재 뇌종양 진료는 전문의가 전용 소프트웨어로 뇌 Magnetic Resonance Imaging(MRI) 이미지를 확대, 축소하여 자세히 살펴보면서 종양의 크기, 위치, 양성/악성 여부 등을 판단한다. 이 방식은 의사의 숙련도에 따라 진료 시간과 판독의 차이가 크고 오진 가능성이 있다. 본 논문은 뇌종양 종류별 MRI 이미지가 학습된 CNN 모델을 사용한 의사의 뇌종양 진단 시간 단축, 진단 정확도 향상을통해 환자 치료의 효율성을 높이는 방안으로 Brain Tumor X를 제안한다.

1. 서론

대한뇌종양학회에 따르면 뇌종양은 인체에 발생 하는 종양 중 약 10%를 차지하며, 세 번째로 발생 빈도가 높다. 국제인구 통계자료에 의하면 매년 인 구 10만 명당 약 10명의 새로운 환자가 뇌종양 진단 을 받는다. 국내에서는 매년 2,500~4,500명이 발생하 여 현재 뇌종양 환자는 약 2만여 명으로 추정되고 있다.[1] 뇌종양의 정확한 발병 원인은 불명이며, 예 방법이 없다. 오늘날 의학기술의 지속적 발전에 따 라 미세 현미경, 수술용 로봇 등의 장비를 활용해 여러 뇌종양을 안전하게 치료할 수 있다.[2] 뇌종양 의 종류별 MRI 이미지가 학습된 컨볼루션 신경망 (Convolutional Neural Network, CNN) 모델을 활용 한다면 뇌종양의 유무를 신속히 파악하고, 균모세포 종, 신경절종, 뇌하수체종 등의 뇌종양 종류를 정확 하게 분류할 수 있을 것이다. 이를 통해 현재 15~30 분 걸리는 뇌종양 진단 시간을 3~5분으로 줄여 전문 의의 진료 시간 단축에 도움을 줄 수 있고, 진단 정 확도를 높여 뇌종양 환자에게 더 나은 의료 서비스 를 제공할 수 있을 것이다.

본 논문은 뇌종양 치료를 돕기 위한 빠른 진단

방안으로 Brain Tumor X(BTX)를 제안한다. BTX는 뇌종양 종류별 이미지가 사전에 학습된 CNN 모델에 뇌 MRI 이미지를 입력하여 뇌종양의 종류에따라 이미지를 분류한다. 이는 뇌 MRI 이미지에서직접 종양의 유무, 크기, 위치, 모양, 특성 등을 일일이 살펴보고 병명을 판단해야 하는 의사들의 수고를 덜어줄 수 있을 것이다.

2. 관련 연구

답러닝 기반 인공지능 기술을 의료분야에 활용하면 각종 질병을 더 빨리 예측하고 그 정확도를 높일수 있다. 이에 미국 펜실베이니아 대학의 페럴만 (Perelman) 의과대학은 인텔(Intel)과 함께 연합학습에 기반을 둔 뇌종양 진단을 위해 딥러닝 모델을 개발 중이다. 개발 기간 중 지속적인 검증 결과는 인공지능과 딥러닝의 가치를 입증하고 있다. 페럴만의과대학은 프로그램 개발을 앞당기기 위해 29개 기관과 협력하여 연구를 진행하고 있다.[3] Ahmet 등은 뇌종양 진단을 돕기 위해 GoogLeNet, Inception V3, DenseNet-201, AlexNet, ResNet-50의 5가지 CNN 모델을 사용한 뇌 MRI 이미지 분류 방법을

제안했다.[4] 또한, Khwaldeh 등은 AlexNet 모델을 사용하여 뇌종양 유무에 따라 뇌 MRI 이미지 데이 터 분류를 진행했다.[5]

본 논문에서 제안하는 BTX 시스템은 이미지 분류를 위해 CNN 모델을 사용한다는 점에서 소개된 연구들과 공통점이 있다. 이전의 연구들과 차이를 두기 위해 VGG-16, ResNet-18, ResNet-50, Wide-ResNet 4가지 모델을 사용하여 뇌종양 종류별 뇌MRI 이미지 분류를 진행한다.

3. BTX 설계 및 모델 학습

본 연구는 No Tumor, Glioma Tumor(신경교종), Meningioma Tumor(수막종), Pituitary Tumor(뇌하 수체종)의 4개 Class로 구성된 Brain Tumor Classification(MRI) Image 데이터셋을 사용한다. 총 2.870장의 Train 이미지를 8:2 비율로 나눠 각각 모 델 학습과 검증에 활용하며, 총 394장의 Test 이미 지를 테스트에 사용한다. 신경망 모델의 입력 이미 지 크기는 모두 같아야 하므로 전처리를 진행한다. 모든 데이터셋의 이미지를 256x256픽셀 크기로 통일 하고, Random Crop으로 이미지를 무작위로 잘라 224x224픽셀 크기로 조정함으로써 뇌 MRI 이미지를 신경망 모델에 활용할 수 있도록 한다. 전처리를 마 친 Train 데이터셋을 CNN 모델 4가지에 학습시킨 다. 학습된 모델의 검증 결과는 정확도, 정밀도, 재 현율, Loss를 계산하여 확인하고, CNN 모델별로 Loss가 가장 낮은 학습 모델을 테스트에 활용한다.

4. 실험 결과

표 1은 학습한 모델들의 Test 결과 평가지표를 정리한 것이다. 정확도, 정밀도, 재현율은 높을수록, Loss는 낮을수록 테스트 결과가 우수함을 나타낸다. 4가지 모델의 재현율은 0.9905~1.0000, Loss는 0.0000~0.0004로 큰 차이가 없었다. 레이어 수가 제일 적은 VGG-16 모델의 정확도는 0.7045, 정밀도는 0.6710으로 가장 낮았다. 레이어 수는 ResNet-50 모델보다 적지만 ResNet 모델보다 더 넓은 필터를 사용하여 모델의 너비를 증가시킴으로써 특징 추출 능력을 향상시킨 Wide-ResNet 모델의 정확도는

평가 요소	Accuracy	Precision	Recall	Loss
VGG-16	0.7045	0.6710	0.9905	0.0000
ResNet-18	0.8065	0.7794	1.0000	0.0004
ResNet-50	0.7938	0.7626	1.0000	0.0002
Wide-ResNet	0.8684	0.8450	1.0000	0.0001

<표 1> BTX 모델의 Test 결과 평가지표

0.8634. 정밀도는 0.8450으로 가장 높았다.

5. 결론 및 향후 연구 계획

본 논문은 CNN 모델 4가지를 선정하여 뇌 MRI 이미지 데이터로 뇌종양 분류를 진행하고 그 결과를 확인했다. Wide-ResNet 모델은 정확도 86.84%, 정 밀도 84.50%로 가장 우수하다. 모든 모델의 재현율 과 Loss는 1에 가깝다. 하지만 정확도와 정밀도는 90% 미만이다. ResNet-50은 ResNet-18보다 레이어 수가 32개 많지만, 결과 수치가 더 낮게 나타났다. 이는 모델 학습과 검증 과정에서 쓰인 데이터셋의 데이터 수가 많지 않고. 클래스별로 그 수가 다르기 때문이다. 향후 연구에서는 데이터 수가 가장 적은 No-Tumor 클래스를 기준으로 클래스별 데이터 수 를 동일하게 조정하여 모델에 사용할 예정이다. 또 한, 기존 데이터셋보다 데이터 수가 많고 클래스별 데이터 수가 균등한 데이터셋을 활용하면 95% 이상 의 Accuracy를 보이는 Brain Tumor Classification 을 제안할 수 있다. 또한, 더 많은 종류의 뇌종양을 다룸으로써 뇌종양 환자들에게 진단 및 치료에 도움 을 줄 수 있도록 할 것이다.

ACKNOWLEDGEMENT

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 ICT명품인재양성사업(ITTP-2023-2020-0-01821), 4단계 BK21 사업과 인공지능 혁신 허브 연구 개발(No.2021-0-02068)의 지원을 받아 수행된 연구임.

참고문헌

- [1] 대한뇌종양학회, '뇌종양에 대한 일반적인 설명' https://www.braintumor.or.kr/public/infor/sub2_1.php
- [2] '뇌종양, 신경학적 증상 발생 시 조기 진단이 중요', https://www.sedaily.com/NewsView/22Q67KIGWM
- [3] 최국림, '인공지능으로 뇌종양 진단 모델 개발'. 2020.07.30
- [4] A. Çinar and M. Yıldırım, "Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture" Medical Hypotheses, pp. 109684, DOI: 2020.10.1016/j.mehy.2020.10968
- [5] Khawaldeh et al., "Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks," Applied Sciences, Vol. 8, no. 1, p. 27, 2018.