
ASK 2023 학술발표대회 논문집 (30권 1호)

Rust언어 메모리 안전 모델에서 스마트 포인터의 역할
에 대한 연구

카욘도마틴 1, 방인영 2, 백윤흥 3

1,2서울대학교 전기정보공학과 박사과정
3서울대학교 전기정보공학과 교수

kayondo@snu.ac.kr, iybang@sor.snu.ac.kr, ypaek@snu.ac.kr

Understanding The Role of Smart Pointers in the Rust
Memory

Martin Kayondo1, Inyoung Bang1, Yunheung Paek1
1Dept. of Electrical and Computer Engineering and Inter-University Semiconductor Research

Center(ISRC), Seoul National University

Abstraction
Rust has gained popularity as a memory safe systems programming language. At the center of its memory

safety is a strict memory ownership model with stringent rules enforced by the compiler. This paper aims to shed
light on this memory safety model and the role smart pointers play towards its success. We study specific smart
pointers, their purposes and contribution to Rust’s memory safety. We further explore weaknesses of these smart
pointers and their APIs, and provide scenarios under which they may lead to memory vulnerabilities in Rust
programs.

1. Introduction

Rust is a systems programming language that has gained
popularity over the years, mainly because of the memory
safety it promises, while offering competitive runtime
performance close, and sometimes better than C/C++. For
this, it has been adopted in the Linux kernel and Android OS.
Rust’s memory safety model is unique because it uses
ownership and borrowing concepts to enforce strict rules that
prevent common memory bugs such as use-after-free, buffer
overflow and data races. This is especially attractive because
compared to C/C++ these rules are enforced automatically by
the compiler rather than having memory managed by the
programmer as in C/C++. One of the essential features of this
memory safety model is the use of smart pointers. The role of
smart pointers in Rust is so well defined that in a purely safe
Rust program (Safe Rust), all memory operations are
performed using smart pointers. Rust code is considered
unsafe if there is use of unsafe blocks, where the programmer
calls an unsafe function, dereferences a raw pointer or makes
a routine call to a function from an external library written in
a foreign language (FFI). In this work, unsafe Rust and FFI
are considered orthogonal because pointers sent to FFI as
arguments are strapped into raw pointers, and unsafe Rust
has no major link to smart pointers other than exposing this
APIs for custom use by programmers – which we explore in
section 3.

Unlike other languages that use explicit memory
allocation and management or garbage collection, Rust
assigns a single owner to each memory object and all other

pointers are considered borrowers. This is Rust’s ownership
model. Under this model, an object may be borrowed either
mutable or immutably, but only a single mutable borrower
exists at a time. The model also defines lifetimes on borrows
to check against the owner’s liveliness. When an owner goes
out of scope, the owned object is freed and the borrowed
object must not outlive the owner, otherwise this would lead
to a use-after-free (UAF) bug. Ownership can be transferred
to another variable, causing the original owner and all
borrowers to lose access to the memory object. This model
enforces restricted aliasing, and any violation of these rules
leads to a compile error. With a single owner, Rust
fundamentally mitigates UAF bugs by ensuring dangling
pointers never exist in the program. Thus, all dereferences in
Rust are always valid. Lifetimes and ownership rules
guarantee that access on any memory object is always valid
in terms of liveliness. Similarly, data races are deterred by
this model since there is only a single legal writer at a time.

To enforce these rules, the memory model relies on smart
pointers. A smart pointer in Rust is a data object with
awareness of the Rust memory model. It holds a raw pointer
and, in some cases, additional metadata, and its interface
(API) provides for borrowing, ownership transfer and
cleanup. As expected, however, the rules enforced by the
model are too stringent for Rust to offer a reasonable
programming experience and to build large scale programs
that match today’s demands. For example, with the single
ownership rule, shared memory either among threads or
process is virtually impossible. Therefore, depending on the
needs of the programmer, specific smart pointers are

- 345 -

ASK 2023 학술발표대회 논문집 (30권 1호)

available either to ease programmability while withholding
ownership rules or to provide additional memory safety.

2. Smart Pointers in Rust

Box: This is the basic heap pointer and the most
elementary smart pointer in Rust. It is equivalent to a
malloced pointer in C/C++, although its API provides
automatic cleanup where by the wrapped pointer is free once
the owner goes out of scope. All references to a boxed object
are technically valid and there are no dangling pointers as the
Box API supports both borrowing and ownership transfer as
explained above.

Vec: This is a commonly used versatile smart pointer in
Rust for dynamic arrays. It acts as a heap-allocated buffer
and stores not only a pointer to the buffer, but also metadata
such as buffer capacity and currently used length. The Vec
API provides for borrowing, buffer slicing, and ownership
transfer. It also offers secure indexing, where every index is
checked against the length metadata to prevent overflows.

Rc (Reference Counted): As aforementioned, the
ownership model usually only allows for a single owner for a
memory object. This makes it impossible to develop certain
data structures such as doubly linked lists in Rust. As a
workaround, Rc provides for multiple owners of a single
memory object at the same time. It maintains a reference
counter to keep track of the number of owners of the shared
objects, which is automatically incremented when a new
pointer to the same object is formed and decremented when
any of the owners goes out of scope. When the counter drops
to zero, the memory object is finally deallocated. It is
important to note that although Rc provides for multiple
ownership, in order to support the single mutability rule, all
references it provides are immutable and only have read
access to the memory object.

Cell and RefCell: These are referred to as interior
mutability pointers. They are special in a way that they
cannot be dereferenced directly and the programmer would
have to use their APIs to read or write to them. Their APIs
provides a hidden mutability, making it implicitly legal to
write they store. A Cell or RefCell appears immutable on the
surface, but the programmer may use the set method to write
to them. Cell allows for direct modification of the stored
value using its get and set methods, while RefCell allows for
the creation of borrowed references using borrow and
borrow_mut methods. When used with Rc, Cell and RefCell
can provide safe access to mutable data even in presence of
multiple references. Cell enforces ownership and borrowing
rules at compile time through its API, whereas RefCell tracks
borrow counts through metadata and enforces rules at
runtime.

Smart pointers discussed above ensure enforce memory
safety rules only in single-threaded environments. In
multithreaded environments, shared objects are inevitable.
With the single ownership rule, it is difficult to design shared
objects among threads. An obvious solution would be using
Rc, but since it relies on the reference counter metadata,
synchronization issues in the would affect the validity of the
reference counter, resulting in memory bugs. Rust provides
more smart pointers specifically for multithreaded
environments as explored below:

Arc (Atomically reference counted pointer): Like Rc, Arc

allows multiple parts of a program to hold references to a
shared value. However, unlike Rc, Arc uses atomic reference
counting and locking to ensure that these references are
safely managed across multiple threads. This makes it safe to
share ownership of a value between threads, as long as all
references are declared as Arc.

Mutex and RwLock: Like Rc, Arc enables only
immutable shared references. To solve this limitation, Mutex
can be used. Mutex locks the data before access and unlocks
it after. This ensures that data races are prevented in
multithreaded environments. However, Mutex comes with
the overhead of locking, even for read-only access. RwLock
is a more efficient alternative as it only locks on write
accesses, making it a better choice for memory objects with
more read operations compared to write operations. Mutex
relies on the lock and poison flag metadata to enforce safety,
where the position flag is set when a thread holding the lock
panics, alerting other threads sharing the object about
possible invalidity of the pointer due to the panic.

3. Smart Pointer Weaknesses

In the previous section, we explored the different smart
pointers in Rust and how they help enforce ownership rules.
However, as mentioned, some of these smart pointers store
metadata on which the memory model depends to enforce
memory safety. On the other hand, some smart pointers
solely depend on their API and the programmer’s proficiency
to ensure memory safety rules are withheld. In this section,
we investigate two cases in which smart pointers may be
used by an attacker to mislead the memory model and cause
vulnerabilities.

Metadata Overwriting:
Consider a case where an attacker is able to overwrite the

metadata of a smart pointer. As a result, such an attack
controls the operation of the memory model at runtime and
may cause the program the execute on their plans. This is
especially possible in Rust programs that make calls into FFI
routines. An FFI function with a buffer overflow bug maybe
exploited to overwrite smart pointer metadata as shown in
Figure 1.

(Figure 1) A possible overflow from an FFI function

can affect smart pointer metadata [1]

Suppose x in Figure 1 (a) is a Vec smart pointer, an attacker
may use leverage the overflow in the FFI function in Figure
1 (b) to overwrite the length metadata of the smart pointer.
Further checks on such a pointer to prevent heap overflows
by the memory model would be unsound, hence an attacker

- 346 -

ASK 2023 학술발표대회 논문집 (30권 1호)

can mislead the model to cause a heap-buffer overflow. This
kind of attack is possible on other smart pointers that rely on
metadata to enforce memory safety.

API misuse:
Another scenario is when programmers misuse the

smart pointer APIs, causing unsound behavior at run time.
Some smart pointers expose their APIs for experienced
programmers to modify the metadata at will. However, such
uses are usually considered unsafe and must be wrapped by
the unsafe keyword. In the Rust world, it is etiquette to add a
comment on such blocks explaining why the programmer
believes what they are doing is still safe, nonetheless, some
programmers misuse these APIs in many cases. Figure 2
shows one such case in which the programmer uses the
set_len function of the Vec smart pointer, setting the length
metadata with a potentially unsound value. This example is a
reported CVE [2], proving that such bugs are prevalent in
Rust programs.

(Figure 2) Smart pointer API misuse leading to potential
unsound behavior.

Several API misuses cases such as that in Figure 2 have been
reported. It is evident that most of these issues are due to use
of unsafe Rust, or FFI. As a result, several works [3, 4] have
proposed solutions to improve Rust’s memory safety by
isolation, but to best of our knowledge, there has not been
any work outlining the need to review smart pointer safety.

4. Conclusion

In this work, we have explored Rust’s memory model and
its reliance on smart pointers. We explain how different smart
pointers are used and how they contribute to Rust’s memory
safety. However, we also show that even though these a core
to Rust’s memory safety model, they themselves are
susceptible to corruption and may rather mislead a Rust
program into undefined behavior or even make it susceptible
to memory attacks. With this, we advise Rust programmers
to use unsafe smart pointer APIs with extra care, and
possibly isolate FFI with any of the cited previous works to
enhance provided safety.

5. Acknowledgement

This work was supported by the National
Information Society Agency, funded by the Ministry
of Science and ICT in 2023 (No. 2021-0-00528), to
develop standard protocols for hardware-based
trusted computing and distributed data protection
platforms.

References
[1] Mergendahl Samuel, Nathan Burow, and Hamed Okhravi,

“Cross-language attacks.”, In Proceedings 2022 Network
and Distributed System Security Symposium., NDSS, vol
22, pp.1-17, 2022

[2] https://nvd.nist.gov/vuln/detail/CVE-2021-28037 “CVE-
2021-28037 Detail”

[3] Liu Peiming, Gang Zhao, and Jeff Huang, “Securing
unsafe rust programs with XRust”, Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, pp. 234-245, 2020

[4] Kirth, Paul, et al, “PKRU-Safe: automatically locking
down the heap between safe and unsafe languages.”,
Proceedings of the Seventeenth European Conference on
Computer Systems, pp. 132-148, 2022.

- 347 -

