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Abstraction 
Rust has gained popularity as a memory safe systems programming language. At the center of its memory 

safety is a strict memory ownership model with stringent rules enforced by the compiler. This paper aims to shed 
light on this memory safety model and the role smart pointers play towards its success. We study specific smart 
pointers, their purposes and contribution to Rust’s memory safety. We further explore weaknesses of these smart 
pointers and their APIs, and provide scenarios under which they may lead to memory vulnerabilities in Rust 
programs. 

 
1. Introduction 

Rust is a systems programming language that has gained 
popularity over the years, mainly because of the memory 
safety it promises, while offering competitive runtime 
performance close, and sometimes better than C/C++. For 
this, it has been adopted in the Linux kernel and Android OS. 
Rust’s memory safety model is unique because it uses 
ownership and borrowing concepts to enforce strict rules that 
prevent common memory bugs such as use-after-free, buffer 
overflow and data races. This is especially attractive because 
compared to C/C++ these rules are enforced automatically by 
the compiler rather than having memory managed by the 
programmer as in C/C++. One of the essential features of this 
memory safety model is the use of smart pointers. The role of 
smart pointers in Rust is so well defined that in a purely safe 
Rust program (Safe Rust), all memory operations are 
performed using smart pointers. Rust code is considered 
unsafe if there is use of unsafe blocks, where the programmer 
calls an unsafe function, dereferences a raw pointer or makes 
a routine call to a function from an external library written in 
a foreign language (FFI). In this work, unsafe Rust and FFI 
are considered orthogonal because pointers sent to FFI as 
arguments are strapped into raw pointers, and unsafe Rust 
has no major link to smart pointers other than exposing this 
APIs for custom use by programmers – which we explore in 
section 3.  

Unlike other languages that use explicit memory 
allocation and management or garbage collection, Rust 
assigns a single owner to each memory object and all other 

pointers are considered borrowers. This is Rust’s ownership 
model. Under this model, an object may be borrowed either 
mutable or immutably, but only a single mutable borrower 
exists at a time. The model also defines lifetimes on borrows 
to check against the owner’s liveliness. When an owner goes 
out of scope, the owned object is freed and the borrowed 
object must not outlive the owner, otherwise this would lead 
to a use-after-free (UAF) bug. Ownership can be transferred 
to another variable, causing the original owner and all 
borrowers to lose access to the memory object. This model 
enforces restricted aliasing, and any violation of these rules 
leads to a compile error. With a single owner, Rust 
fundamentally mitigates UAF bugs by ensuring dangling 
pointers never exist in the program. Thus, all dereferences in 
Rust are always valid. Lifetimes and ownership rules 
guarantee that access on any memory object is always valid 
in terms of liveliness. Similarly, data races are deterred by 
this model since there is only a single legal writer at a time. 

To enforce these rules, the memory model relies on smart 
pointers. A smart pointer in Rust is a data object with 
awareness of the Rust memory model. It holds a raw pointer 
and, in some cases, additional metadata, and its interface 
(API) provides for borrowing, ownership transfer and 
cleanup. As expected, however, the rules enforced by the 
model are too stringent for Rust to offer a reasonable 
programming experience and to build large scale programs 
that match today’s demands. For example, with the single 
ownership rule, shared memory either among threads or 
process is virtually impossible. Therefore, depending on the 
needs of the programmer, specific smart pointers are 
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available either to ease programmability while withholding 
ownership rules or to provide additional memory safety.  

 
2. Smart Pointers in Rust 

Box: This is the basic heap pointer and the most 
elementary smart pointer in Rust. It is equivalent to a 
malloced pointer in C/C++, although its API provides 
automatic cleanup where by the wrapped pointer is free once 
the owner goes out of scope. All references to a boxed object 
are technically valid and there are no dangling pointers as the 
Box API supports both borrowing and ownership transfer as 
explained above. 

Vec: This is a commonly used versatile smart pointer in 
Rust for dynamic arrays. It acts as a heap-allocated buffer 
and stores not only a pointer to the buffer, but also metadata 
such as buffer capacity and currently used length. The Vec 
API provides for borrowing, buffer slicing, and ownership 
transfer. It also offers secure indexing, where every index is 
checked against the length metadata to prevent overflows.  

Rc (Reference Counted): As aforementioned, the 
ownership model usually only allows for a single owner for a 
memory object. This makes it impossible to develop certain 
data structures such as doubly linked lists in Rust. As a 
workaround, Rc provides for multiple owners of a single 
memory object at the same time. It maintains a reference 
counter to keep track of the number of owners of the shared 
objects, which is automatically incremented when a new 
pointer to the same object is formed and decremented when 
any of the owners goes out of scope. When the counter drops 
to zero, the memory object is finally deallocated. It is 
important to note that although Rc provides for multiple 
ownership, in order to support the single mutability rule, all 
references it provides are immutable and only have read 
access to the memory object. 

Cell and RefCell: These are referred to as interior 
mutability pointers. They are special in a way that they 
cannot be dereferenced directly and the programmer would 
have to use their APIs to read or write to them. Their APIs 
provides a hidden mutability, making it implicitly legal to 
write they store. A Cell or RefCell appears immutable on the 
surface, but the programmer may use the set method to write 
to them. Cell allows for direct modification of the stored 
value using its get and set methods, while RefCell allows for 
the creation of borrowed references using borrow and 
borrow_mut methods. When used with Rc, Cell and RefCell 
can provide safe access to mutable data even in presence of 
multiple references. Cell enforces ownership and borrowing 
rules at compile time through its API, whereas RefCell tracks 
borrow counts through metadata and enforces rules at 
runtime. 

Smart pointers discussed above ensure enforce memory 
safety rules only in single-threaded environments. In 
multithreaded environments, shared objects are inevitable. 
With the single ownership rule, it is difficult to design shared 
objects among threads. An obvious solution would be using 
Rc, but since it relies on the reference counter metadata, 
synchronization issues in the would affect the validity of the 
reference counter, resulting in memory bugs. Rust provides 
more smart pointers specifically for multithreaded 
environments as explored below: 

Arc (Atomically reference counted pointer): Like Rc, Arc 

allows multiple parts of a program to hold references to a 
shared value. However, unlike Rc, Arc uses atomic reference 
counting and locking to ensure that these references are 
safely managed across multiple threads. This makes it safe to 
share ownership of a value between threads, as long as all 
references are declared as Arc.  

Mutex and RwLock: Like Rc, Arc enables only 
immutable shared references. To solve this limitation, Mutex 
can be used. Mutex locks the data before access and unlocks 
it after. This ensures that data races are prevented in 
multithreaded environments. However, Mutex comes with 
the overhead of locking, even for read-only access. RwLock 
is a more efficient alternative as it only locks on write 
accesses, making it a better choice for memory objects with 
more read operations compared to write operations. Mutex 
relies on the lock and poison flag metadata to enforce safety, 
where the position flag is set when a thread holding the lock 
panics, alerting other threads sharing the object about 
possible invalidity of the pointer due to the panic.  

 
3. Smart Pointer Weaknesses 

In the previous section, we explored the different smart 
pointers in Rust and how they help enforce ownership rules. 
However, as mentioned, some of these smart pointers store 
metadata on which the memory model depends to enforce 
memory safety. On the other hand, some smart pointers 
solely depend on their API and the programmer’s proficiency 
to ensure memory safety rules are withheld. In this section, 
we investigate two cases in which smart pointers may be 
used by an attacker to mislead the memory model and cause 
vulnerabilities. 

 
Metadata Overwriting:  
Consider a case where an attacker is able to overwrite the 

metadata of a smart pointer. As a result, such an attack 
controls the operation of the memory model at runtime and 
may cause the program the execute on their plans. This is 
especially possible in Rust programs that make calls into FFI 
routines. An FFI function with a buffer overflow bug maybe 
exploited to overwrite smart pointer metadata as shown in 
Figure 1. 

 

 
(Figure 1) A possible overflow from an FFI function 

can affect smart pointer metadata [1] 

Suppose x in Figure 1 (a) is a Vec smart pointer, an attacker 
may use leverage the overflow in the FFI function in Figure 
1 (b) to overwrite the length metadata of the smart pointer. 
Further checks on such a pointer to prevent heap overflows 
by the memory model would be unsound, hence an attacker 

- 346 -



ASK 2023 학술발표대회 논문집 (30권 1호)

 
 

 

 

can mislead the model to cause a heap-buffer overflow. This 
kind of attack is possible on other smart pointers that rely on 
metadata to enforce memory safety. 

 
API misuse: 
Another scenario is when programmers misuse the 

smart pointer APIs, causing unsound behavior at run time. 
Some smart pointers expose their APIs for experienced 
programmers to modify the metadata at will. However, such 
uses are usually considered unsafe and must be wrapped by 
the unsafe keyword. In the Rust world, it is etiquette to add a 
comment on such blocks explaining why the programmer 
believes what they are doing is still safe, nonetheless, some 
programmers misuse these APIs in many cases. Figure 2 
shows one such case in which the programmer uses the 
set_len function of the Vec smart pointer, setting the length 
metadata with a potentially unsound value. This example is a 
reported CVE [2], proving that such bugs are prevalent in 
Rust programs. 

 

 
 

(Figure 2) Smart pointer API misuse leading to potential 
unsound behavior. 

 
Several API misuses cases such as that in Figure 2 have been 
reported. It is evident that most of these issues are due to use 
of unsafe Rust, or FFI. As a result, several works [3, 4] have 
proposed solutions to improve Rust’s memory safety by 
isolation, but to best of our knowledge, there has not been 
any work outlining the need to review smart pointer safety. 
 
4. Conclusion 

In this work, we have explored Rust’s memory model and 
its reliance on smart pointers. We explain how different smart 
pointers are used and how they contribute to Rust’s memory 
safety. However, we also show that even though these a core 
to Rust’s memory safety model, they themselves are 
susceptible to corruption and may rather mislead a Rust 
program into undefined behavior or even make it susceptible 
to memory attacks. With this, we advise Rust programmers 
to use unsafe smart pointer APIs with extra care, and 
possibly isolate FFI with any of the cited previous works to 
enhance provided safety. 
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