Positive Regulator, a Rice C3H2C3-type RING Finger Protein H2-3(OsRFPH2-3), in Response to Salt Stress

  • Min Seok Choi (Plant Genomics Laboratory Interdisciplinary Program in Smart Agriculture, Kangwon National Univ) ;
  • Cheol Seong Jang (Plant Genomics Laboratory Interdisciplinary Program in Smart Agriculture, Kangwon National Univ)
  • Published : 2023.04.20

Abstract

Salinity is a major abiotic stress that limits rice productivity in many regions of the world. In order to develop salt stress tolerant rice plants, genetic engineering is a promising approach. We characterized the molecular function of rice C3H2C3 as a really interesting new gene (RING). Oryza sativa RING finger protein H2-3 (OsRFPH2-3) was highly expressed in 100 mM NaCl. To identify the localization of OsRFPH2-3, we fused vectors that include C-terminal GFP protein (35S;;OsRFPH2-3-GFP). OsRFPH2-3 was expressed in the nucleus in rice protoplasts. An in vitro ubiquitin assay demonstrated that OsRFPH2-3 possessed E3-ubiquitin ligase activity. However, the mutated OsRFPH2-3 were not possessed any E3-ubiquitin ligase activity. Under salinity conditions, OsRFPH2-3-overexpressing plants exhibited higher chlorophyll, proline, SOD, POD, CAT, and soluble sugar contents and lower H2O2 accumulation than wild-type plants, supporting transgenic plants with enhanced salinity tolerance phenotypes. OsRFPH2-3-overexpressing plants exhibited low Na+ accumulation and Na+/K+ ratios in their roots. Theses results suggest that overexpression of OsRFPH2-3 can make plant insensitivity about salinity conditions.

Keywords

Acknowledgement

The Basic Science Research Program supported this work through the National Research Foundation of Korea (NRF), funded by the Ministry of Education(2019R1A2C1009840)