NOTE ON A MAPPING OF CONNECTED COMPONENTS

By Mi-Soo Pae

Let \(f \) be one-to-one bicontinuous mapping between a topological space \(X \) and a topological space \(Y \). Then \(X \) and \(Y \) are homeomorphic, so that there exists one-to-one correspondence between connected components of \(X \) and connected components of \(Y \), by \(f \). But there is the another condition for this matter, where \(f \) is not a homeomorphic mapping.

The correspondence \(f \) is closed if \(A \) a closed subset of \(X \) then \(f(A) \) is closed in \(Y \); \(f \) is connected if \(C \) a connected subset of \(X \) implies \(f(C) \) is a connected subset of \(Y \). [2]

For mapping \(f \), if \(f^{-1} \)is closed then \(f \) is continuous mapping from \(X \) to \(Y \). [1]

Lemma 1. \(f \) is closed (preimage of \(f \), then \(f \) is connected. [1]

We assume the following property for mapping \(f \):

(P) For each closed subsets \(A, B \), \(f(A) \cap f(B) \neq \emptyset \)

there exists at least one element \(y \in f(A) \cap f(B) \)

such that there is some \(x \in f^{-1}(y) \) having sequences \(\{a_n\} \subseteq A, \{b_n\} \subseteq B, \; a_n \to x, \; b_n \to x \).

Lemma 2. \(f \) is closed mapping having property (P). If \(A, B \) are closed sets: \(A \cap B = \emptyset \), and then \(f(A) \cap f(B) = \emptyset \).

Proof. If \(f(A) \cap f(B) \neq \emptyset \), there exists a \(x \in A \cap B \), by condition (P).

Since \(A \cap B = \emptyset \) and \(A, B \) are closed sets, then \(f(A) \cap f(B) = \emptyset \).

Lemma 3. \(f \) is closed mapping with property (P). For any set \(M \) of \(Y \), if \(A, B \) are closed sets of \(X \) such that \(A \cap B \cap f^{-1}(M) = \emptyset \), then \(f(A), f(B) \) are disjoint in \(M \).

Proof. If it is not so: \(f(A) \cap f(B) \cap M \neq \emptyset \). There is a \(x \) belonging to \(f^{-1}(y) \), such that \(a_n \to x, \; b_n \to x, \; \{a_n\} \subseteq A, \; \{b_n\} \subseteq B \) and \(x \in f^{-1}(M) \), because

\[
 f^{-1}(y) \subseteq f^{-1}[f(A) \cap f(B) \cap M] = f^{-1}[f(A) \cap M] \cap f^{-1}[f(B) \cap M] = f^{-1}[f(A) \cap f^{-1}(M) \cap f^{-1}(M)].
\]
Hence \(x \equiv \overline{A} \cap \overline{B} \cap \overline{f(M)} = A \cap B \cap f^{-1}(M) \).

Since \(A, B \) is disjoint in \(f(M) \), then \(f(A), f(B) \) disjoint in \(M \).

LEMMA 4. \(f \) is biclosed mapping with property (P) and \(C \) is a connected component of \(X \), then \(f(C) \) is connected component of \(Y \).

Proof. \(f(C) \) is connected by lemma 1. For any connected subset \(C' \) of \(Y \) containing \(f(C) \), \(f^{-1}(C') \) contains \(C \).

Now \(A, B \) are closed sets of \(X \) such that \(f^{-1}(C') \subset A \cup B \), and \(A, B \) are disjoint in \(f^{-1}(C') \), then by using lemma 3, \(f(A), f(B) \) are disjoint in \(C' \). \(f(A), f(B) \) are closed, for \(f \) is closed mapping, and \(f(A) \cup f(B) \supset C' \). Since \(C' \) is connected set in \(Y \), \(f(A) \cap C' = \emptyset \) or \(f(B) \cap C' = \emptyset \). Then \(A \cap f^{-1}(C') = \emptyset \), or \(B \cap f^{-1}(C') = \emptyset \), for \(A \cap f^{-1}(C') \subset f^{-1}(f(A) \cap f^{-1}(C')) = f^{-1}(f(A) \cap C') = \emptyset \).

Hence \(f^{-1}(C') \) is connected. Then \(f^{-1}(C') = C \), because \(C \) is a connected component of \(X \) and \(C \) is contained in the connected set \(f^{-1}(C') \). So that \(C' \) is equal to \(f(C) \), i.e. \(f(C) \) is a connected component of \(Y \).

REMARK. \(f \) is closed mapping with property (P), then if \(M \) disconnected in \(X \) implies \(f(M) \) is a disconnected set of \(Y \).

THEOREM. For two topological spaces \(X, Y \), if there exists biclosed mapping with property (P), then there is one-to-one correspondence between connected components of \(X \) and connected components of \(Y \).

Proof. Let us put \(X = \bigcup_{\alpha \in I} C_{\alpha} \), \(Y = \bigcup_{\beta \in J} C'_{\beta} \), where \(C_{\alpha} \) is a connected component of \(X \) for all \(\alpha \) belonging to \(I \), and \(C'_{\beta} \) is a connected component of \(Y \) for all \(\beta \) belonging to \(J \). For each \(\alpha \) belonging to \(I \) there is a \(\beta \) belonging to \(J \), such that \(f(C_{\alpha}) = C'_{\beta} \) by lemma 4. Referring the above remark, \(f^{-1}(C'_{\beta}) \) is connected. And for the connected set \(C \) containing \(f^{-1}(C'_{\beta}) \), \(f(C) \) is contained in \(C'_{\beta} \), since \(C'_{\beta} \) is a connected component. Then \(f^{-1}(C'_{\beta}) \) is a connected component of \(X \). So there is an \(\alpha \) belonging to \(I \) such that \(f^{-1}(C'_{\beta}) = C_{\alpha} \) for each \(\beta \) of \(J \). Finally, if \(C_{1}, C_{2} \) are two connected components of \(X \), then \(C_{1}, C_{2} \) are closed and disjoint in \(X \). By lemma 2, \(f(C_{1}), f(C_{2}) \) are disjoint.
component of Y. Hence there is one-to-one correspondence between the elements of I and the elements of J.

In this note f is continuous closed mapping and f is not one-to-one mapping.

May. 30, 1958
Mathematical Department
Liberal Arts and Science College
Kyungpook University

REFERENCES