NOTES ON THE SET OF THE PARTIAL ORDERINGS

By Mi-Soo Bae

Introduction.

It is well known that the set of the partitions of a set is a complete lattice. Here I will concern that the set of some partial orderings on a set forms an atomic complete Boolean lattice, in the section one. In the section two there are concerned with the relation between the set of the partitions of a set S and the set of the partial orderings on S.

In his paper [2], Ladislas Fuchs asserted that any normal partly ordered commutative group has an extension of this partly ordered commutative group and it has also the normality. So I am concerned with the set of the normal partly ordered commutative groups on a fixed group A, in the section three.

1. The set of the partly ordered sets on a fixed set S.

Let S be a fixed abstract set in the section one and two. $\quad P_{\alpha}$ is a partly ordered set means P_{α} has a partial ordering \leqq on S :
$x \leqq x$ in P_{α} for any $x \in S ; x \leqq y$ in P_{α} and $y \leqq x$ in P_{α} implies $x=y$;
$x \leqq y$ in P_{α} and $y \leqq z$ in P_{α} implies $x \leqq z$ in P_{α}.
We say that P_{α}, P_{β} have compatible partial orderings if and only if for any $x \neq y, x \leqq y$ in P_{α} then $x \geqq y$ in P_{β} and $x \leqq y$ in P_{β} then $x \geqq y$ in P_{α}.
Let P be the set of all partly ordered sets on S. We give a relation \leqq between elements P_{α}, P_{β} of P by $P_{\alpha} \leqq P_{\beta}$ in P if and only if $x \leqq y$ in P_{α} implies $x \leqq y$ in P_{β}. Then it is easily shown that the relation in P is a partial ordering, i. e. reflexive, antisymmetric and transitive relation.
P_{α} is said to be a maximal element in P if there exists no element P_{β} of P such that $P_{\beta}>P_{\alpha}$ in P. E. Szpilrajn has proved that every partial ordering defined on a set has a linear extension, [3]. Let L_{α} be a linear ordering on S then L_{α} is a maxial element in P.
P_{α} is said to be a minimal element in P if there exists no element P_{β} of P such that $P_{\beta}<P_{\alpha}$.

Let P_{o} be a partly ordered set on S such that for any 2 elements x, y of S $x \# y$ in P_{o},[4]. Then P_{o} is a minimal element in P. Moreover P_{o} is the least element of P. Let us denote the least element in P by O , i.e. O is a partly ordered set on S such that for any x, y of $O \quad x \# y$ in O.

Let P_{α} be a partly ordered set on S such that the fixed elements $x ; y$ of S
$x \leqq y$ in P_{α} and for arbitrary elements u, v of S distinct from $x, y, x \# u, x \# v$, $u \# v$ in $P \alpha$. Obviously this partly ordered set covers O in P. Hence this type of partly ordered set are called by atom in P, and written by $A(x, y)$.

We denote by $A(y, x)$ as a dual of the partial ordered set $A(x, y) . \quad A(y, x)$ is also an atom in P. And $A(x, y) \# A(y, x)$ in P.
$A(x, y), A(y, x)$ are not compatible partly ordered sets.
For any P_{α}, P_{β} of P we define a relation in P_{γ} as follows:
$x \leqq y$ in P_{γ} if and only if $x \leqq y$ in P_{α} and $x \leqq y$ in P_{β}.
Then P_{γ} is a partly ordered set on S. And P_{γ} is the meet of P_{α} and P_{β} in P, obviously. We denote the meet of P_{α} and P_{β} by $P_{\alpha} \cup P_{\beta}$. So that P is an atomic meet-semilattice with zero element O.

Let M_{α} be a set of $P_{\alpha} \in P$ such that the all elements in M_{α} are compatible each other. Denote by $M_{\alpha}=\left\{P_{\alpha} \mid \alpha \in A\right\}$. Thus $M_{\alpha} \subset P$.

LEMMA 1. M_{α} is an atomic complete lattice.

PROOF. Obviously O is contained in M_{α}. If $P_{\alpha} \in M_{\alpha}\left(P_{\alpha} \neq O\right)$ has elements $x, y: x \leqq y$ in P_{α} then there exists an atom $A(x, y)$ in M_{α} such that $A(x, y)$ $\leqq P_{\alpha}$ in M_{α}. Hence M_{α} is an atomic meet-semilattice. M_{α} has a unit element $L \alpha$, linear ordered set compatible with P_{α}. If $L_{\alpha}, L^{\prime} \alpha$ are linear ordered sets in M_{α}. Then since $L_{\alpha}, L^{\prime} \alpha$ are linear ordered sets for arbitrary 2 elements $x, y x \leqq y$ or $x \geqq y$ in L_{α}, and $x \leqq y$ or $x \geqq y^{\prime}$ in $L^{\prime} \alpha$. If $x \leqq y$ in L_{α} and $x \leqq y$ in $L^{\prime} \alpha$ then L_{α} $\leqq L^{\prime} \alpha$ and $L^{\prime} \alpha \leqq L_{\alpha}$. So that $L_{\alpha}=L^{\prime} \alpha$. If $x \leqq y$ in L_{α} and $x \geqq y$ in $L^{\prime} \alpha$ then it is a contradiction to the assumption of M_{α}. Hence M_{α} has a unit element $L \alpha$.
For arbitrary $A_{1} \subseteq A, \quad\left\{P \in A_{1}\right\} \subset M \alpha . \cap\left\{P_{\alpha} \mid \alpha \in A_{1}\right\}$ exists and a partly ordered set on S by

$$
x \leqq y \text { in } \cap\left\{P_{\alpha} \mid \alpha \in A_{1}\right\} \quad \Longleftrightarrow \quad x \leqq y \text { in } P_{\alpha} \text { for all } \alpha \in A_{1} .
$$

Obviously $\cap\left\{P_{\alpha} \mid \alpha \in A_{1}\right\} \in M \alpha$. Thus M_{α} is an atomic complete lattice.
P_{α}, P_{β} are compatible partly ordered sets on $S: P_{\alpha}, P_{\beta \in} M \alpha$. We are going to consider with a new relation \leqq in P_{δ} on S as follows:

$$
x \leqq y \text { in } P_{\delta} \quad \Longleftrightarrow \quad x \leqq y \text { in P } 1 \text { or } x \leqq y \text { in } P_{\beta} .
$$

Then \leqq in P_{δ} is a reflexive, antisymmetric relation but not always transitive. For, it is easily seen reflexive. \leqq in P_{δ} is an antisymmetric relation because $P_{\alpha}, P \beta$ are compatible. We have an example such that this relation \leqq in P_{δ} is not always transitive.

EXAMPLE. Let x, y, z be 3 distinct elements of S. Let $P_{\alpha}=A(x, y)$ and $P_{\beta}=A(y, z)$, in $P_{\delta} x \leqq y$ by $x \leqq y$ in P_{α}, and $y \leqq z$ in P_{δ} by $y \leqq z$ in P_{β}. But $x \# z$ in P_{δ} because $x \# z$ in P_{α} and P_{β}. Thus the relation \leqq in P_{δ} is not transitive.

We can now obtain the following 3 lemmas easily.

LEMMA 2. Let P_{δ} have a transitive relation \leqq :
$x \leqq y$ in P_{δ} if and only if $x \leqq y$ in P_{α} or $x \leqq y$ in P_{β}.
Then P_{δ} is a partly ordered set on $S . P_{\delta}$ is compatible to $P \alpha$, and the join of P_{α} and $P \beta$, written by $P_{\alpha} \cup P_{\beta}$.

LEMMA 3. Let M_{α} be the totality of the all partly ordered sets which are each other compatible. For $P_{\alpha}, P_{\beta}, P_{\gamma} \in M_{\alpha} \quad P_{\alpha}$ is compatible with P_{β} and P_{α} is compatible with P_{γ} then P_{β} is compatible with P_{γ}.

LEMMA 4. ($\left.P_{\alpha} \cup P_{\beta}\right) \cap P_{\gamma}=\left(P_{\alpha} \cap P_{\gamma}\right) \cup\left(P_{\beta} \cap P_{\gamma}\right)$ in M_{α}.
For any $P_{\alpha} \in M_{\alpha},\left(P_{\alpha} \neq O, P_{\alpha} \neq L_{\alpha}\right)$, since M_{α} is an atomic lattice there exist $A(x, y) \leqq P_{\alpha}$ in M_{α} if P_{α} has $x, y: x \leqq y$ in P_{α}. Let $o f$ be the set of the all atoms in M_{α}, and $\mathcal{L}\left(P_{\alpha}\right)$ be the set of atoms $A(x, y)$ which satisfy $A(x, y) \leqq P_{\alpha}$. Then $P_{\alpha}=\cup\left\{A(x, y) \in O \mathcal{L}\left(P_{\alpha}\right)\right\}$. For, there exists an element of $M_{\alpha}: P_{\beta}=\cup\{A(x, y)$ $\left.\epsilon O \mathcal{L}\left(P_{\alpha}\right)\right\}$ by completeness of M_{α}. Obviously $P_{\beta} \leqq P_{\alpha}$. If $P_{\beta}<P_{\alpha}$ there exists a pair of elements $a, b(a \neq b) a \# b$ in P_{β} and $a \leqq b$ (or $a \geqq b$) in P_{α}. This pair a, b determines an atom $A(a, b)$ (or $A(b, a)) \in M_{\alpha}$ because $A(a, b)$ (or $A(b, a)$) $\leqq P_{\alpha}$. Since $a \neq b$ in $P_{\beta}, P_{\beta} ¥ A(a, b)$ (or $P_{\beta} \nexists A(b, a)$). This leads a contradiction with $P_{\beta}=\cup\left\{A(x, y) \in O\left(P_{\alpha}\right)\right\}$. Thus $P_{\alpha}=P_{\beta}$. Let put $P^{\prime}{ }_{\alpha} \in M_{\alpha}$ such that $P^{\prime}{ }_{\alpha}$ $=\cup\left\{A(x, y) \in O \ell-O \ell\left(P_{\alpha}\right)\right\}$. Here $\propto \ell-O \ell\left(P_{\alpha}\right)$ is nonvoid because in P_{α} there is a pair $c, d: c \# d$. Thus $o t-o t\left(P_{\alpha}\right)$ contains at least one atom $A(c, d)$ (or $A(d, c)$). Then $P_{\alpha} \# P^{\prime} \alpha_{\alpha}$ obviously. Hence $P_{\alpha} \cap P^{\prime} \alpha_{\alpha}=O$ and $P_{\alpha} \cup P^{\prime} \alpha=L_{\alpha}$, where L_{α} is a unit element of $M \alpha$. So that we can obtain the following lemma.

LEMMA 5. M_{α} is a complemented lattice.

THEOREM 1. M_{α} is an atcmic complete Boolean lattice.
PKOOF. By lemma l $M \alpha$ is an atomic complete lattice. Since M_{α} is distributive
by lemma 4. M_{α} is unique complemented refering to lemma 5. Then M_{α} is an atomic complete Boolean larttice. [1]

LEMMA 6. Let M be a lattice in P. Any P_{α}, P_{β} belonging to $M \alpha$ have compatible partial orderings.

PROOF. For any P_{α}, P_{β} of M there exist $P_{\alpha} \cup P_{\beta}$ and $P_{\alpha} \cap P_{\beta}$ belonging to M. If P_{α} and P_{β} have not compatible partial orderings there exists one pair of elements $x, y(x \neq y)$ such that $x \leqq y$ in P_{α} and $y \leqq x$ in P_{β}. Then $x \leqq y$ in $P_{\alpha} \cup P_{\beta}$ from $x \leqq y$ in P_{α}, and $y \leqq x$ in $P_{\alpha} \cup P_{\beta}$ by $y \leqq x$ in P_{β}. Thus $x=y$ since $P_{\alpha} \cup P_{\beta}$ is a partly ordered set. This is a contradiction with $x \neq y$. Hence P_{α} and P_{β} have a compatible partial orderings.

THEOREM 2. Let M be a maximal lattice in P. Then M has a unit L_{α}, and zero O. And M is a set of all partly ordered seis P_{α} which is compatille with L_{α} in P.

PROOF. For any partly ordered set P_{α} in M there is a linearization L_{α} of P_{α}. Let M_{α} be the set of partly ordered sets P_{α} which are compatible with L_{α} in P. Then $M \alpha$ is a lattice. Moreover M_{α} is a maximal lattice in P. If $M \neq M_{\alpha}$, there is a partly ordered set $P_{\gamma} \in M-M_{a}$ and P_{γ} is not compatible with $L a$. Then $M \ni P_{\gamma}, P_{\alpha}$ which are not compatible. This means M is not a lattice. Then $M=M_{\alpha}$ 。

In P there are a number of linearization of maximal lattices. Let $\mathcal{O F}$ be the set of all maximal lattices in $P . \mathcal{F}$ is equivalent to the set of all linearization of S.

THEOREM 3. \mathcal{F} is equivalent to the set of all linearizations of S.

THEOREM 4. Let M_{α} and M_{β} are 2 maximal lattices in $P . L_{\alpha}$ and L_{β} are the unit elements of M_{α} and M_{β}, respectively. If there is an order isomorthism between L_{α} and L_{β} or a dual order isomorphism between L_{α} and L. Then M_{α} is lattice iscmorphic to M_{β}.

PROOF. If there is an order isomophism τ between L_{α} and L_{β}. And $a \alpha$ of L_{α} corresponds to a_{β} of L_{β} by $\tau: \tau\left(a_{\alpha}\right)=a_{\beta}$. If b_{α} of L_{α} corresponds to b_{β} of L_{β} : $\tau(b \alpha)=b \beta$. When $a \alpha \leqq b \alpha$ then $\tau\left(a_{\alpha}\right) \leqq \tau\left(b_{\alpha}\right) \quad$ i. e. $a_{\beta} \leqq b \beta$. Thus τ leads a
correspondence τ^{*} between atoms of M_{α} and atoms of M_{β} as

$$
\tau^{*} A\left(a_{\alpha}, b_{\alpha}\right)=A\left(\tau\left(a_{\alpha}\right), \tau\left(b_{\alpha}\right)\right)=A\left(a_{\beta}, b_{\beta}\right)
$$

Obviously τ^{*} is a $1-1$ correspondence between the set of all atoms of M_{α} and the set of all atoms of M_{β}.

If L_{α} corresponds to L_{β} by an order dual isomorphism ϕ. Then ϕ leads the correspondence ϕ^{*} between atoms in M_{α} and atoms in M_{β}, as $\phi^{*}\left(A\left(a_{\alpha}, b_{\alpha}\right)\right)$ $=A\left(\phi\left(b_{\alpha}\right), \phi\left(a_{\alpha}\right)\right)$. Thus ϕ^{*} is also a 1-1 correspondence between the set of all atoms of M_{α} and the set of all atoms of M_{β}.

In both cases we obtained a 1-1 correspondence batween the set of all atoms of M_{α} and the set of all atoms of M_{β}. Since M_{α} is isomorphic with the Boolean algebra of all subsets of the set of all atoms of M_{β}, for arbitrary P_{α} of M_{α} there exists a subset of the set of all atoms of M_{α} which satisfies $P_{\alpha}=\cup\left\{A\left(a_{\alpha}, b_{\alpha}\right)\right.$ $\left.\leqq P_{\alpha}\right\}$. This is held in M_{β}, too. We denote the set of atoms correspond with P_{α} $\epsilon M_{\alpha}, P_{\beta} \in M_{\beta}$ by $o \not\left(P_{\alpha}\right), \quad o \not\left(P_{\beta}\right)$, respectively. Then P_{α} corresponds to P_{β} if and only if $\mathcal{\sim}\left(P_{\alpha}\right)$ corresponds with ot (PB) by correcpondence τ^{*} (or ϕ^{*}):

$$
\text { for } \quad \begin{aligned}
& P_{\alpha}=\cup\left\{A\left(a_{\alpha}, b \beta\right) \in O \mathscr{L}\left(P_{\alpha}\right)\right\} \text { and } \\
& P_{\beta}=\cup\left\{A\left(a_{\beta}, b \beta\right) \in O \mathcal{L}\left(P_{\beta}\right)\right\}, \\
& o z\left(P_{\alpha}\right)\left.\longleftrightarrow o t\left(P_{\beta}\right) \text { by } \tau^{*} \text { (or } \phi^{*}\right) \\
& \Longleftrightarrow P_{\alpha} \longleftrightarrow P_{\beta} .
\end{aligned}
$$

And obviously the correspondence between the elements of M_{α} and the elements of M_{β} is isomorphism between M_{α} and M_{β} from $P_{\alpha} \leqq P_{\gamma}$ if and only if $o \imath\left(P_{\alpha}\right)$ $\leqq O t(P \gamma)$.

COROLLARY. There exists a fixed set of which satisfies M_{α} is latticeisomorphic with 2^{α} for each α.

PROOF. To each M_{α} there is a set of atoms $O \mathcal{L}\left(M_{\alpha}\right)$ which satisfies M_{α} is lattice isomopphic with $2^{\alpha(M \alpha)}$. The Cardinal number $\left|\alpha \ell\left(M_{\alpha}\right)\right|$ of $\sigma t\left(M_{\alpha}\right)$ is equal to $\left|\mathcal{O}\left(M_{\beta}\right)\right|$ for each β because this is the number of combinations of taking 2 from $|S|$. So that we can take a fixed set of which satisfies that M_{α} is lattice-isomorphic with 2α by correspondence φ_{α} for each α.
2. The lattice of all partitions on S.

We need a definition about a partly ordered set in this section. We call the partly ordered set P_{α} by a tree if P_{α} consist of chains, and in P_{α} $a \# b$ for any elements a, b belonging distinct chains.

For any fixed set S we are considered with the set B of the partitions of S. In B we introduce a partial ordering \leqq as follows: $\pi \alpha \leqq \pi \beta$ for $\pi \alpha, \quad \pi \beta$ of B means π_{α} is a refinement of π_{β}. Then B is a complete lattice, as well known. We dfine a correspondence between a partition of S and a partly ordered set on S as follows:

```
for }\mp@subsup{\pi}{\alpha}{}\inB\quad\pi\alpha={\cdots\cdots\cdots\cdots,A\alpha,B\alpha,\cdots\cdots\cdots\cdot} corresponds with
tree t\alpha ={\cdots\cdots,C(A\alpha),\cdotsC(B\alpha),\cdots\cdots.}}
```

Where $C\left(A_{\alpha}\right)$ is a chain orderedset of $A_{\alpha} \subset S$; if $A \alpha, B \alpha$ are components of $\pi \alpha$ then for arbitrary x of $C\left(A_{\alpha}\right)$ and arbitrary y of $C\left(B_{\alpha}\right) x \# y$ in t_{α}; and any t_{α}, t_{β} are compatible partial ordered sets each other. We denote the set of this trees by \mathscr{L}. Then this correspondence becomes a order homomorphism form \mathscr{L}, to B by similar way in the section one. Since the elements of \mathscr{L} are compatible each other this correspondence is $1-1$ correspondence. So that there is an order isomorphism between \mathscr{L} and B.

THEOREM 5. On the fixed set S the lattice of all partitions is lattice isomorphismic with a lattice of all compatible trees on S :

3. Partly ordered groups.

It is well known that any abstract commutative group whose elements are all of infinite order can be made into a linearly ordered group, [1]

Ladislas Fuchs asserted in his paper that a partial ordering on a commutative group has an extension if the above partial ordering is normal. Moreover he proved that every normal partial ordering on a commutative group has a linear ordering which is an extension of the above one. Here I am concerned with the set G of all normal partly ordered groups on a fixed commutative group A.

A partly ordered group $A \alpha$ is a commutative group A, written additively, with a relation < which is defined between some pairs of its elements such that the following postulates hold:
(a) any two of the three relations $a>b, a=b, a<b$ are contradictory;
(b) transitivity: $a>b$ and $b>c$ impiies $a>c$;
(c) homogeneity: $a>b$ implies $a+c>b+c$ for every c in A;
(d) normality: $n a=a+a+\cdots+a \geqq 0$ for some positive integer n implies $a \geqq 0$.
Conditions (a) and (b) is equivalent with the condition that the relation \leqq is a partial ordering. By the conditions (b) and (c) the relations $a>b, c>d$ may be added to get $a+c>b+d$.
For any A_{α} of G there exists an extension $A \beta$ of $A \alpha$ which is again a normal partial ordering, [2].

The partial ordering between 2 elements $A \alpha, A \beta$ of G is defined as follows:
$A_{\alpha} \leqq A_{\beta}$ if and only if A_{β} is an extension of $A \alpha$.
Let G_{1} be any subset of $G, G_{1}=\{\cdots \cdots, A \tau, \cdots \cdots\}$. We define a new partial ordering P on A as follows:
for any 2 elements a, b of A we put $a>b$ in P if and only if $a>b$ in every A_{τ} in G_{1}.

It is obviously proved that P is again a partly ordered group. Moreover P is normal if all $\mathrm{A} \tau$ in G_{1} are normal. The partial order P is said to be the meet of G_{1}, written by $P=\cap A_{\tau}\left(A_{\tau} \in G_{1}\right)$. Then G is a meet-complete semilattice.

In this case G conains the commutative group A on which the relation is defined no pair of elements. This is the previous fixed commutative group A. Since A has no element of finite order other than O, identity in commutative group A. A in which no partial order is defined is normal. So we can say that G contains A as the least element.

If we define a normal partial ordering on A as $x<y$ between exact 2 elements x, y of A. By the conditions (a)-(d) of the normal partial ordering on G the fact $x<y$ determine a definite partly ordered group in G such that $y-x>0$; $x+z<y+z$ for arbitrary z of A; and $m(y-x) \geqq n(y-x)$ if n, m are integers $n \leqq m$.

The partly ordered group on A of this type is obviously an atom in G. We denote this by $A(x, y)$.

LEMMA 7. G is an atomic meet-complete semilattice.
For a linearly ordered group L_{α} of A let us put the set $N \alpha$ of the all normal partly ordered groups $\leqq L_{\alpha}$. Then N_{α} is the set of all compatible partly ordered groups and $N \alpha$ contains a unit element $L \alpha$. Hence N_{α} becomes a complete lattice. Thus we obtain the following lemma.

LEMMA 8. Let N_{α} be the set of all normal partly ordered groups $\leqq L_{\alpha}$, for a linearly ordered group L_{α} of A. Then N_{α} tecomes an atomic complete lattice.

In $N_{\alpha}, A_{\alpha} \cup A_{\beta}=A \gamma$ is a partly ordered group with a normal transitive relation \leqq in $A \gamma$ such that

$$
x \leqq y \text { in } A \alpha \text { if and only if } x \leqq y \text { in } A \alpha \text { or } x \leqq y \text { in } A \beta .
$$

Certainly we need the assumption of normality in the above $A \gamma$. And we can assume this assumption without any contradiction. For example if $n a \# 0$ in $A \alpha$ for positive integer n and there exists an element x such that $n a \geqq x$ in $A \alpha$ and $x \geqq 0$ in $A \beta$ then $n a \geqq 0$ in $A \gamma$ by transitivity. But we can not prove that the normality of the relation in $A_{\gamma}: a \geqq 0$, eventhough A_{α} and $A \beta$ are normal.

By the similarway in the section one we obtain the followings.
LEMMA 9. $\quad N_{\alpha}$ is a distributive lattice.

LEMMA 10. For any $A_{\alpha} \in N_{\alpha}$ there exists $A \beta \in N_{\alpha}$ such that $A_{\alpha} \cap A \beta=A$ and $A_{\alpha} \cup A_{\beta}=L \alpha$.

PROOF. Let $o z(A \alpha)$ be the set of all atoms $A(a, b) \leqq A \alpha$. Then $A \alpha$ $=\cup\{A(a, b) \in O \mathcal{O}(A \alpha)\}$. This is proved by the same way in the lemma 5 . Now put $A \beta$ as the join of all atoms which belong to $o t\left(N_{\alpha}\right)-o l(A \alpha)$ where $o t\left(N_{\alpha}\right)$ is the set of all atoms in $N \alpha$. Then we can easily prove that $A_{\alpha} \cap A \beta=A$ and $A_{\alpha} \cup A_{\beta}=L_{\alpha}$, by completeness of $\mathrm{N} \alpha$, [1]

THEOREM 6. $N \alpha$ is an atomic complete Boolean Lattice.

COROLLARY. $\quad N_{\alpha}$ is lattice isomorphic with $2 \alpha\left({ }^{(N a)}\right.$.

REFERENCES

〔1〕 G．Birkhoff，Lattice theory，rev．ed．，New York，（1948）．
〔2〕 Ladislas Fuchs，On the extension of the partial order of groups，Amer．Journal of Math．，Vol．LXXII，No．1，pp．191－194，（1950）．
〔3〕 E．Szpilrajn，Sur l＇extension de l＇ordre partiel，Fund．Math．，Vol．16，pp．386－389， （1930）．
（4）$x \# y$ denotes that x is incomparable to y ．

