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Introduction‘ 

It is well known that the set of the partitions of a set is a complete lattice. 

Here 1 will concern that the set of some partial orderings on a set forms an atomic 

complete Boolean lattice, in the section one. ln the section two there are 

concerned with the relation between the set of the partitions of a set S and the 

set of the partial orderings on S. 
In his paper [2] , Ladislas Fuchs asserted that any normal partly ordered 

commutative group has an extension of this partly ordered commutative group 

and it has also the normality. So 1 am concerned with the set of the normal 

재rtly ordered commutative groups on a fixed group A, in the section three. 

1. The set of the partly ordered sets on a fixed set S. 

Let S be a fixed abstract set in the section one and two. Pα is a partly 

ordered set means Pα has a partial ordering 든 on S: 

X든x in Pa for any XES; X르y tη Pa and y르X in Pa imψlies x=y; 

X든y in Pa and y든z in Pa imþlies X르z in Pa. 

We say that Pa, Pß have ccmþatible pa1'lial orderings if and only if for any 

x "", y , x르y in Pa then X호y in Pß and x르y in Pß then x主y in Pa. 

Let P be the set of all partly ordered sets on S. We give a relation 르 between 

elements Pa , Pß of P by Pa 르Pß in P if and only if x르y in Pa implies x르y 

in Pß. Then it is easily shown that the relation in P is a partial ordering, i. e. 

reflexive, antisymmetric and transitive relation. 
Pα is said to be a maximal element in P if there exists no element Pß of P 

such that Pß >Pa in P. E. Szpilrajn has proved that everγ partial ordering 

defined on a set has a linear extension, [3]. Let La be a linear ordering on S 

then La is a maxial eleπlent in P. 

Pα is said to be a minimal element in P if there exists no element Pß of P 
such that Pß <Pa. 

Let PO be a partly ordered set on S such thät for any 2 elements x , y of S 

x#y in Po , [4J. Then PO is a minimal element in P. Moreover PO ia the least 
element of P. Let us denote the least element in P by 0 , i. e. 0 is a partly 

ordered set on S such that for any X.Y of 0 x#y in 0 ‘ 

Let Pa be a partly ordered set on S such that the fixed elements x;y of S 
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X르y in Pa and for arbitrary elements u ,v of S distinct from x ,y x# κ， x#v, 
u# ν in Pa. Obviously this partly ordered set covers 0 in P. Hence this type of 
partly ordered set are called by atom in P , and written by A(x,y). 

We denote by A(y, x) as a dual of the partial ordered set A(x,y). A(y,x) 

is also an atom in P. And A(x, y) # A(y, x) in P. 
A(x,y) ,A(y,x) are not compatible partly ordered sets. 

For any P U• Pß of P we define a relation in Pyas follows: 

X르y in Py if and only if x든y in Pa and x든y in Pß. 

Then Py is a partly ordered set on S. And Py is the meet of Pa and Pß in 
P , obviously. We denote the meet of Pa and Pß by PaUPß.' 80 that P is an 
atotn.ic meet-semilattice with zero element O. 

Let Ma be a set of Pα E P such that the all elements in Mα are compatible 

each other. Denote by Mα =(Pa IαEA). Thus Ma CP. 

LEMMA 1. Ma is an atomic complete lattice. 

PROOF. Obviously 0 is còntained in Mα. If Pα EMα (Pa ~O) has elements 

x ,y: x르y in Pa then there exists an atom A(x,y) in Ma such that A(x, y) 

르Pα in Ma. Hence Ma is an atomic meet-semilattice. Mα has a unit element Lα， 

linear ordered set compatible with Pa , If Lu. L' a are linear ordered sets in Ma 

Then since Lα. L' a are linear ordered sets for arbitrary 2 elements x , y x르y or 
X르y in Lα. and x르y or x르Y' in L' a, If x르yinLα and x르y in L' a then Lα 

르L'a and L'a 르La， 80 that La =L' a, If x르y in La and x르y in L'α then it is a 

contradiction to the assumption of Mα. Hence Ma has a unit element La. 

Fot arbitrary A)ζA， {PEAdζMa， n{Pa i αeAd exists and a partly ordered 

set on S by 

X르yin n{Pa lae A .J (> X든y in Pa for all aEA\. 

Obviously n {Pa IαeAd eMα， Thus Mα is an atomic complete lattice. 

Pα , Pß are compatible partly ordered sets on S : Pa , PßEMa. We are going 

to consider with a new relation 든 in Põ onS as follows: 

X르y in PÕ ( > X르y in Pa or x르y in Pß • 

Then 르 in PÕ is a reflexive, antisymmetric relation but not always transitive. 

For, it is easily seen reflexive. 르 in Pð is an antisymmetric relation because 

Pa , Pß are compatible. We have an example such that this relation 든 in Põ is 

not always transitive. 
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EXAMPLE. Let x , y , z be 3 distinct elements of S. Let Pa =A(x, y) and 
Pp=A(y, z) , in Pò x르y by x르y in Pα， andy르z in Pò by y르z in pp. But x :l:j: z 

in Pò because x :l:j: z in Pα and P p. Thus the relation 르 in Pò is not transitive. 

We can now obtain the following 3 lemmas easily. 

LEMMA 2. Let Pò have a t1'ansitive 1'elation 든 : 

X르y in Pò if and only if x든y in Pα 01' X든j’ in PP. 

Then Pò is a partly o1'de1'ed set on S. Pa is compatible to Pa, and the join 

of Pα and pp, written by Pa u pp. 

LEMMA 3. Let Ma be the totality of the all ψa1'tly o1'de1'ed sets which a1'e 

each othe1' compatible. Fo1' Pa , Pp , Pr e Ma Pa is compatible with Pp and 

Pa is compatible μJith Pr theχ Pp is compatible with Pr. 

LEMMA 4. (Pa U Pp) ÍI Pr= (Pa n Pr )u(Pp n Pr) 껴 Mα. 

For any Pa 에ða , (Pa ~O， Pa 울La) ， since Ma is an atomic lattice there ex
ist A(x, y)든Pa in Ma if Pa has x , y: x르y in Pa. Let α be the set of the all 

atoms in Mα， and α(Pa) be the set of atoms A(x,y) which satisfy A(x, y) 르Pα. 

Then Pa=u(A(x,y)e α(Pa )}. For, there exists an element of Ma: Pp=U(A(x, y) 

εα(Pα)} by completeness of Ma. Obviously Pp 르Pa. If Pp <Pa there exists a 

pair of elements a, b (a~b) a :l:j: bin Pp and a르b (or a르b) in Pa. This pair a, b 

determines anatom A(a,b) (or A(b,a))e Mα because A(a, b) (or A(b, a))르 Pa. 

Since a :l:j: b in Pp , Pp 초A(a， b) (or Pp 主A(b， a)). This leads a contradiction with 

Pp =() (A(x , y)e α(Pα )}. Thus Pα =PP. Let put P'α eMα such that P'α 

=() (A(x, y)e α-α(Pa)). Here α-α(Pa) is nonvoid beca.use in Pα there is a 

pair c, d: c :l:j: d. Thus α-α (Pa ) contains at least one atom A(c, d) (or A(d, c)). 

Then P a :I:j: P' a obviously. Hencc P a nP'α =0 and Pα UP'a =Lα , where La is 

a unit element of Mα . So that we can obtain the following lemma. 

LEMMA 5. Mα is a complemented lattice. 

THEOREM 1. Ma is an atcmic ccmplete Boolean. lattice. 

PROOF. By lemp1a 1 Ma is aIl atomic comp1ete 1anice- Since Ma is distributive 
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by lemma 4. M a is unique complemented refering to lemma 5. Then M a is 

an atomic complete Boolean larttice. [1] 

LEMMA 6. Let M be a lattice in P. Any Pa , Pp belonging to Ma have 

comψatiéle þartial O1'derings. 

PROOF. For any Pα , P P of M there exist Pα U Pp and Pα C\ Pp belonging 

to M. If Pα and P p ha ve not compatible partial orderings there exists one pair of 

elements x , y (x혹y) such that x르y in Pa and y르x in pp. Then x트y in PaUPp 

from x르y in Pa , and y든x in Pα U Pp by y든x in PP. Thus x=y since PaUPp 

is a partly ordered set. This is a contradiction with x""y. Hence Pa and Pp have 

a compatible partial orderings. 

i 

THEOREM 2. Let M be a maximal lattice 쩌 P. T f. en M has a unit Lα , 
and zero O. And M is a set 0/ all þartly orde1'ed sets p，α which 1S 
ccmþatiéle with La in P. 

PROOF. For any partly ordered set Pa in M there is a linearization La of Pα. 

Let Mα be the set I)f partly ordered sets Pα which are compatible with La in P. 

Then Mα is a lattice. Moreover M a is a maximal lattice in P. If M "" Mα , 
there is a partly ordered set Pr EM M a: and Pr is not compatible with La. Then 

M3 Pr, Pa which are not compatible. This means M is not a lattice. Then 

M=Mα 

1n P there are a number of linearization of maximal lattices. Let 0/ be the set 

of all maxim.al lattices in P. 0/ is equivalent to the set of all linearization of S. 

THEOREM 3. 0/ 15 eq.uivalent to the set of all linearizations of S. 

THEOREM 4. Let Ma and Mp are 2 maximal lattices 쩌 P. La and Lp aγe 

the μnit elements of Ma and Mp , resþectively. 1f there is an order 

fs0%Orψhism between La and Lp or a dual order isomorþhi5m between La and 

Lp . Then Ma i5 lattice iscmorþhic to Mp • 

PROOF. If there is an order isomophism r between Lα and Lp. And aa of Lα 

corresponds to ap of Lp by r : r(aa ) =ap. If ba of La corresponds to bp of L p : 

r(bα ) =bp • When aa 르ba then r(aa ) 르r(ba) i. e. aß 르Óß. Thus r leads a 
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correspondence r* between atoms of Ma and atoms of Mp as 

r* A(aα , ba )=A (r(aa) , r(ba ))=A(ap. bp ). 

Obviously r* is a 1-1 correspondence between the set of a l1 atoms of Ma and the 
set of al1 atoms of Mp • 

If La corresponds to Lp by an order dual isomorphism φ. Then φ leads the 

correspondence ψ between atoms in Ma and atoms in Mp , as cþ*(A(aα , ba )) 

=A(cþ(ba) , cþ (aa )). Thus cþ* is also a 1-1 correspondence between the set of 
all atoms of Ma and the set of al1 atoms of Mp • 

In both cases we obtained a 1-1 correspondence between the set of all atoms 
of Mα and the set of all atoms of Mp. Since Ma is isomorphic with the Bo::>lean 
algebra of all subsets of the set of all atoms of Mp , for arbitrary Pα of Ma there 
exists a su밟et of the set of all atoms of Mα which satisfies Pa=U(A(aα , ba) 

듣Pa). This is held in Mß , too. We denote the set of atoms correspond with Pa 

eMa , Pß EMß by α(Pa ), α(Pß) ， respectively. Then Pa corresponds toPp if 

and only if α(Pa ) corresponds with α (Pß ) by correcpondence r*(or cþ ‘) : 

for Pa =이ι4. (aα , bß)Eα(Pα )) and 

Pß =U(A(aß , bß )Eot(Pß )}. 

α(Pa)←→α(Pß ) by r* (or φ*) 

( >Pα •• PP. 

And obviously the correspondence between the elements of M a and the elements 
of Mß is isomorphism between Ma and Mß from Pa 르Pr if and only if α(Pa) 

르α(Pr ). 

COROLLARY. There exists a fixed set α μIhich satisfies Ma is lattice

isomorPhic. with 2α for each a. 

PROOF. To each Ma there is a set of atoms α(M a) which satisfies M a is 

lattice isomopphic with 2α(μa ，. The Cardinal number I α (Mα ) I of α(Mα ) is 

equal to I α(Mp ) I for each ß because this is the number of combinations of 

taking 2 from 1 S 1 •.. So that we can take a fixed set α which satisfÎes that Ma is 

lattice-isomorphic with 2 α by correspondence (Pa for each .a. 
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2. The lattice.of all partitions on S. 

We need a .definition about a partly ordered set in this section. 

We call the partIy ordered set Pα by a tree if Pα consist of chains, 
a # b for any elements a, b belonging distinct chains. 

and in Pa 

For any fixed set S we are considered with the set B of the partitions of S. 

In B we introduce a partial ordering 르 as follows: 7["a 르때 for 7["α , πß of B 

me~ns πα is a refinement of 7["ß • Then B is a complete lattice, as well 
known. We dfine a correspondence between a partition of S and a partly 

ordered set on S as follows: 

for 7["a EB 7["a ={ ......... ， Aα , Ba, ......... ) corresponds with 

tree ta =( ...... , C(Aα ), …C(Ba) , ...... ). 

Where C(Aa) is a chain orderedset of Aa C S; if Aα， Ba are components of 7[" a then 

for arbitrary x of C(Aα ) and arbitrary y. of C(Bα ) x# y in tα ; and any tα , tß 

are compatible partial ordered sets each other. We denote the set of this trees 

by æ. Then this correspondence becomes a order homomorphism form æ . to B 

by similar way in the section one. 5ince the elements of æ are compatible each 

other this correspondence is 1-1 correspondence. 50 that there is an order iso

morphism between æ and B. 

THEOREM 5. On the fixed set S the lattice of all þartitions is lattice 

isomO?ψhisηûc with a lattice ofall comþatible trees on S: 

3. Partly ordered groups. 

It is well known that any ab3tract commutative group whose elements are 

all of infinite order can be made into a linearly ordered group, [1] 

Ladislas Fuchs àsserted ín his paper that a partial ordering 00 a commutative 

group has an extension if the above partial ordering is normal. Moreover he 

proved that every normal partial ordering on a commutative group has a linear 

ordering which is an extension of the above one. Here 1 am concerned with the 

set G of allnormal. partIy orderedgroups on a fixed commutative group A. 

A partly otdered group Aα i3 a commutative group A , written additively, with 

a rêlation < which is defined between some pairs of its elemeotssuch that the 

foIlowing postulates hold: 
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(a) a1Zy tzνo of the three 1elations a>b ,a=b ,. a<b are contγa-

dictory; 

(b) transitivity: a>b and b>c imþlies a>c; 

(c) homogeneity: a>b imþlies a+c>b+c for everyc in A; 

(d) JZormality: 1zα=a+a+ ... +a르o foγ Some þositive integer n 

imþlies a르O. 

Conditións (a) and Cb) is equiva1ent with the condition that the re1ation 르 is a 

partial ordering. By the conditions (b) and (c) the relations n> b, c> d may be 

added to get a+c>b+d. 

For any Aα of G there exists an extension Aß of Aα which is again a normal 

partial ordering, [2]. 

The partial ordering between 2 e1ements Aα , Aß of G is defined as follows: 

Aα 르Aß if and on1y if Aß is a끄 extension of Aa • 

Let G. be any subset of G, G.={ ...... , A • ....... }. We define a new partial 

ordering P on A as follows: 

for any 2 elements a. b of A we put a>b in P if and on1y if a>b in 

every Ar in G •• 

1t is obviously proved that P is again a partly ordered group. Moreover P is 

normal if all Ar in G. are normal. The partial order P is said to be the meet 
of G .. written by P=nAr (A. EG.). Then G is a meet-comp1ete semi1attice. 

1n this case G conains the commutative group A on which the re1ation is de

finedno' pair of e1ements. This is the previous fixed commutative group A. 

Since A has no e1ement of finite order other than 0 , identity in commutative‘ 

group A. A in which no partial order is defined is normal. So we can say that 

G contains A as the least element. 

If we define a norma1 partia1 ordering on A as x<y between exact 2 e1e
ments x. y of A. By the conditions (a) (d) of the norma1 partia1 ordering on G 

the fact x<y determine a definite partly ordered group in G suchthat y-x>O; 

x+z<y+z for arbitrary z of A; and m(y-x) 르n(y-x) if 1Z, m are integers 

%르m. 

The partly ordered group on A of this type 

denote this by A(x.y). -

is obvious1y an atom in G. We 



20 Mi.Soo Boe 

LEMMA 7. G is an atomic meet-comþlete seηzilattice. 

For a Jinearly ordered group Lα of A let us put the set N a of the all normal 

part1y ordered groups 르La. Then N a is the set of all compatible partly ordered 

group3 and N a contains a unit element La. Hence N a becomes a complete 

lattice. Thus we obtain the following lemma. 

LEMMA 8. Let Na úe the set of all n01'mal partly ordered gro,‘ps 든 La • 

for a lineaγly ordered grouþ La of A. Then Na tecomes an atomic comþlete 

lattice. 

ln Nα• AauAß =A'Y is a part1y ordered group with a normal transitive relation 

든 in A'Y such that 

X듣y in Aa if and only if x르yinAaorx르y in Aß • 

Certainly we need the assumption of Dormality in the above A'Y. And we can 

assume this assumption without any contradiction. For example if na # 0 in Aa 

for positive integer n and there exists an element x such that na르x in Aa and 

X르o in Aß then na르o in A 'Y by transitivity. But we can not prove that the 

normality of the relation in A 'Y : a르 O. eventhough Aa and Aß are normal. 

By the similat way in the section one we obtain the followings. 

LEMMA 9. N a is a distribμtive lattice 

LEMMA 10. For any Aa E Na there exists Aß ε N a such that Aa oAß = A 
and Aa u Aß =La • 

PROOF. Let α(Aa ) be the set of all atoms A(a, b) 르 Aa • Then Aa 

=u{A(a， b)Eα(Aa)}. This is proved by the same way in the lemma 5. Now put 

Aß as the join of all atoms which belong to α(Na )-α(Aa) where α(Na) is 

the set of all atoms in N a. Then we can easily prove that Aa n Aß =A and 

Aa l:J Aß =La , by completeness of Nα , [1] 

THEOREM 6. Nα is an atomic comþlete Boolean Lattice. 

COROLLARY. N a is lattice isomorψhic with 2α(Na). 
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