NOTES ON THE SET OF THE PARTIAL ORDERINGS By Mi-Soo Bae

Introduction.

It is well known that the set of the partitions of a set is a complete lattice. Here I will concern that the set of some partial orderings on a set forms an atomic complete Boolean lattice, in the section one. In the section two there are concerned with the relation between the set of the partitions of a set S and the set of the partial orderings on S.

In his paper [2], Ladislas Fuchs asserted that any normal partly ordered commutative group has an extension of this partly ordered commutative group and it has also the normality. So I am concerned with the set of the normal partly ordered commutative groups on a fixed group A, in the section three.

1. The set of the partly ordered sets on a fixed set S_{\cdot}

Let S be a fixed abstract set in the section one and two. P_{α} is a partly ordered set means P_{α} has a partial ordering \leq on S:

 $x \leq x$ in P_{α} for any $x \in S$; $x \leq y$ in P_{α} and $y \leq x$ in P_{α} implies x = y; $x \leq y$ in P_{α} and $y \leq z$ in P_{α} implies $x \leq z$ in P_{α} .

We say that P_{α} , P_{β} have compatible partial orderings if and only if for any $x \neq y$, $x \leq y$ in P_{α} then $x \geq y$ in P_{β} and $x \leq y$ in P_{β} then $x \geq y$ in P_{α} .

Let P be the set of all partly ordered sets on S. We give a relation \leq between elements P_{α} , P_{β} of P by $P_{\alpha} \leq P_{\beta}$ in P if and only if $x \leq y$ in P_{α} implies $x \leq y$ in P_{β} . Then it is easily shown that the relation in P is a partial ordering, i.e. reflexive, antisymmetric and transitive relation.

 P_{α} is said to be a *maximal* element in *P* if there exists no element P_{β} of *P* such that $P_{\beta} > P_{\alpha}$ in *P*. E. Szpilrajn has proved that every partial ordering defined on a set has a linear extension, [3]. Let L_{α} be a linear ordering on *S* then L_{α} is a maxial element in *P*.

 P_{α} is said to be a minimal element in P if there exists no element P_{β} of P such that $P_{\beta} < P_{\alpha}$.

Let P_o be a partly ordered set on S such that for any 2 elements x, y of S x # y in $P_o, [4]$. Then P_o is a minimal element in P. Moreover P_o is the least element of P. Let us denote the least element in P by O, i.e.O is a partly ordered set on S such that for any x, y of O x # y in O.

Let P_{α} be a partly ordered set on S such that the fixed elements x, y of S

14

Mi-Soo Bae

 $x \leq y$ in P_{α} and for arbitrary elements u, v of S distinct from $x, y \neq x \neq u$, $x \neq v$, $u \not\equiv v$ in P_{α} . Obviously this partly ordered set covers O in P. Hence this type of partly ordered set are called by atom in P, and written by A(x,y).

We denote by A(y,x) as a dual of the partial ordered set A(x,y). A(y,x)is also an atom in P. And A(x, y) # A(y, x) in P.

A(x,y), A(y,x) are not compatible partly ordered sets. For any P_{α} , P_{β} of P we define a relation in P_{γ} as follows:

 $x \leq y$ in P_{γ} if and only if $x \leq y$ in P_{α} and $x \leq y$ in P_{β} .

Then P_{γ} is a partly ordered set on S. And P_{γ} is the meet of P_{α} and P_{β} in P, obviously. We denote the meet of P_{α} and P_{β} by $P_{\alpha} \cup P_{\beta}$. So that P is an atomic meet-semilattice with zero element O_{\cdot}

Let M_{α} be a set of $P_{\alpha} \in P$ such that the all elements in M_{α} are compatible each other. Denote by $M_{\alpha} = \{P_{\alpha} \mid \alpha \in A\}$. Thus $M_{\alpha} \subset P$.

LEMMA 1. $M\alpha$ is an atomic complete lattice.

PROOF. Obviously O is contained in M_{α} . If $P_{\alpha} \in M_{\alpha}$ ($P_{\alpha} \neq O$) has elements x,y: $x \leq y$ in P_{α} then there exists an atom A(x,y) in M_{α} such that A(x,y) $\leq P_{\alpha}$ in M_{α} . Hence M_{α} is an atomic meet-semilattice. M_{α} has a unit element L_{α} , linear ordered set compatible with P_{α} . If L_{α} , L'_{α} are linear ordered sets in M_{α} . Then since L_{α} , L'_{α} are linear ordered sets for arbitrary 2 elements x, y $x \leq y$ or $x \ge y$ in L_{α} , and $x \le y$ or $x \ge y$ in L'_{α} . If $x \le y$ in L_{α} and $x \le y$ in L'_{α} then L_{α}

 $\leq L'_{\alpha}$ and $L'_{\alpha} \leq L_{\alpha}$. So that $L_{\alpha} = L'_{\alpha}$. If $x \leq y$ in L_{α} and $x \geq y$ in L'_{α} then it is a contradiction to the assumption of M_{α} . Hence M_{α} has a unit element L_{α} . For arbitrary $A_1 \subseteq A$, $\{P \in A_1\} \subset M_{\alpha} \cap \{P_{\alpha} \mid \alpha \in A_1\}$ exists and a partly ordered set on S by

 $x \leq y \text{ in } \cap \{P_{\alpha} \mid \alpha \in A_1\} \quad \iff \quad x \leq y \text{ in } P_{\alpha} \text{ for all } \alpha \in A_1.$ Obviously $\cap \{P_{\alpha} \mid \alpha \in A_1\} \in M_{\alpha}$. Thus M_{α} is an atomic complete lattice.

 P_{α} , P_{β} are compatible partly ordered sets on $S : P_{\alpha}$, $P_{\beta} \in M_{\alpha}$. We are going to consider with a new relation \leq in P_{δ} on S as follows:

 $x \leq y \text{ in } P\delta \quad \iff \quad x \leq y \text{ in } P\alpha \text{ or } x \leq y \text{ in } P\beta$.

Then \leq in P_{δ} is a reflexive, antisymmetric relation but not always transitive. For, it is easily seen reflexive. $\leq in P\delta$ is an antisymmetric relation because P_{α} , P_{β} are compatible. We have an example such that this relation $\leq in P_{\delta}$ is not always transitive.

Notes on the set of the partial orderings

15

EXAMPLE. Let x, y, z be 3 distinct elements of S. Let $P_{\alpha} = A(x, y)$ and $P_{\beta} = A(y,z)$, in $P_{\delta} x \leq y$ by $x \leq y$ in P_{α} , and $y \leq z$ in P_{δ} by $y \leq z$ in P_{β} . But $x \ddagger z$ in $P\delta$ because x # z in P_{α} and $P\beta$. Thus the relation $\leq in P\delta$ is not transitive. We can now obtain the following 3 lemmas easily.

LEMMA 2. Let $P\delta$ have a transitive relation $\leq :$

 $x \leq y$ in P_{δ} if and only if $x \leq y$ in P_{α} or $x \leq y$ in P_{β} . Then P_{δ} is a partly ordered set on S. Po is compatible to P_{α} , and the join of P_{α} and P_{β} , written by $P_{\alpha} \cup P_{\beta}$.

LEMMA 3. Let M_{α} be the totality of the all partly ordered sets which are each other compatible. For P_{α} , P_{β} , $P_{\gamma} \in M_{\alpha}$ Pa is compatible with P_{β} and P_{α} is compatible with P_{γ} then P_{β} is compatible with P_{γ} .

LEMMA 4. $(P_{\alpha} \cup P_{\beta}) \cap P_{\gamma} = (P_{\alpha} \cap P_{\gamma}) \cup (P_{\beta} \cap P_{\gamma})$ in M_{α} .

For any $P_{\alpha} \in M_{\alpha}$, $(P_{\alpha} \neq O, P_{\alpha} \neq L_{\alpha})$, since M_{α} is an atomic lattice there exist $A(x, y) \leq P_{\alpha}$ in M_{α} if P_{α} has x, y: $x \leq y$ in P_{α} . Let α be the set of the all atoms in M_{α} , and $\mathcal{O}(P_{\alpha})$ be the set of atoms A(x, y) which satisfy $A(x, y) \leq P_{\alpha}$. Then $P_{\alpha} = \bigcup \{A(x, y) \in \mathcal{O}(P_{\alpha})\}$. For, there exists an element of M_{α} : $P_{\beta} = \bigcup \{A(x, y)\}$ $\{ \mathcal{O}(P_{\alpha}) \}$ by completeness of M_{α} . Obviously $P_{\beta} \leq P_{\alpha}$. If $P_{\beta} < P_{\alpha}$ there exists a pair of elements a, b $(a \neq b)$ a # b in P_{β} and $a \leq b$ (or $a \geq b$) in P_{α} . This pair a, bdetermines an atom A(a,b) (or $A(b,a) \in M_{\alpha}$ because A(a,b) (or $A(b,a) \leq P_{\alpha}$. Since a # b in P_{β} , $P_{\beta} \geqq A(a, b)$ (or $P_{\beta} \geqq A(b, a)$). This leads a contradiction with $P\beta = \bigcup \{A(x,y) \in \mathcal{O}(P\alpha)\}$. Thus $P\alpha = P\beta$. Let put $P'\alpha \in M\alpha$ such that $P'\alpha$ $= \bigcup \{A(x,y) \in \mathcal{O}(P_{\alpha})\}$. Here $\mathcal{O}(P_{\alpha})$ is nonvoid because in P_{α} there is a pair c, d: c # d. Thus $\mathcal{O}(-\mathcal{O}(P_{\alpha}))$ contains at least one atom A(c, d) (or A(d, c)). Then $P_{\alpha} \ \# P'_{\alpha}$ obviously. Hence $P_{\alpha} \cap P'_{\alpha} = O$ and $P_{\alpha} \cup P'_{\alpha} = L_{\alpha}$, where L_{α} is a unit element of $M\alpha$. So that we can obtain the following lemma.

LEMMA 5. M_{α} is a complemented lattice.

THEOREM 1. $M\alpha$ is an atomic complete Boolean lattice. PROOF. By lemma 1 M_{α} is an atomic complete lattice. Since M_{α} is distributive

16 Mi-Soo Bae by lemma 4. M_{α} is unique complemented referring to lemma 5. Then M_{α} is an atomic complete Boolean larttice. [1]

LEMMA 6. Let M be a lattice in P. Any $P\alpha$, $P\beta$ belonging to $M\alpha$ have compatible partial orderings.

PROOF. For any P_{α} , P_{β} of M there exist $P_{\alpha} \cup P_{\beta}$ and $P_{\alpha} \cap P_{\beta}$ belonging to M. If P_{α} and P_{β} have not compatible partial orderings there exists one pair of elements x, y $(x \neq y)$ such that $x \leq y$ in P_{α} and $y \leq x$ in P_{β} . Then $x \leq y$ in $P_{\alpha} \cup P_{\beta}$ from $x \leq y$ in P_{α} , and $y \leq x$ in $P_{\alpha} \cup P_{\beta}$ by $y \leq x$ in P_{β} . Thus x = y since $P_{\alpha} \cup P_{\beta}$ is a partly ordered set. This is a contradiction with $x \neq y$. Hence P_{α} and P_{β} have a compatible partial orderings.

THEOREM 2. Let M be a maximal lattice in P. Then M has a unit L_{α} , and zero 0. And M is a set of all partly ordered sets P_{α} which is compatible with L_{α} in P.

PROOF. For any partly ordered set P_{α} in M there is a linearization L_{α} of P_{α} . Let $M\alpha$ be the set of partly ordered sets $P\alpha$ which are compatible with $L\alpha$ in P_{\bullet} Then $M\alpha$ is a lattice. Moreover $M\alpha$ is a maximal lattice in P. If $M \neq M\alpha$, there is a partly ordered set $P_{\gamma} \in M - M_{\alpha}$ and P_{γ} is not compatible with L_{α} . Then $M
i P_{\gamma}$, P_{α} which are not compatible. This means M is not a lattice. Then $M = M\alpha$.

In P there are a number of linearization of maximal lattices. Let \mathscr{Y} be the set of all maximal lattices in P. \mathscr{Y} is equivalent to the set of all linearization of S.

THEOREM 3. \mathcal{Y} is equivalent to the set of all linearizations of S.

THEOREM 4. Let M_{α} and M_{β} are 2 maximal lattices in P. L_{\alpha} and L_{\beta} are the unit elements of M_{α} and M_{β} , respectively. If there is an order isomorphism between L_{α} and L_{β} or a dual order isomorphism between L_{α} and L β . Then $M\alpha$ is lattice isomorphic to $M\beta$.

PROOF. If there is an order isomophism τ between $L\alpha$ and $L\beta$. And $a\alpha$ of $L\alpha$ corresponds to $a\beta$ of $L\beta$ by $\tau : \tau(a\alpha) = a\beta$. If $b\alpha$ of $L\alpha$ corresponds to $b\beta$ of $L\beta$: $\tau(b\alpha) = b\beta$. When $a\alpha \leq b\alpha$ then $\tau(a\alpha) \leq \tau(b\alpha)$ i.e. $a\beta \leq b\beta$. Thus τ leads a

Notes on the set of the partial orderings

correspondence τ^* between atoms of M_{α} and atoms of M_{β} as

 $\tau^* A(a_\alpha, b_\alpha) = A(\tau(a_\alpha), \tau(b_\alpha)) = A(a_\beta, b_\beta).$

17

Obviously τ^* is a 1-1 correspondence between the set of all atoms of $M\alpha$ and the set of all atoms of $M\beta$.

If L_{α} corresponds to L_{β} by an order dual isomorphism ϕ . Then ϕ leads the

correspondence ϕ^* between atoms in M_{α} and atoms in M_{β} , as $\phi^*(A(a_{\alpha}, b_{\alpha})) = A(\phi(b_{\alpha}), \phi(a_{\alpha}))$. Thus ϕ^* is also a 1-1 correspondence between the set of all atoms of M_{α} and the set of all atoms of M_{β} .

In both cases we obtained a 1-1 correspondence between the set of all atoms of M_{α} and the set of all atoms of M_{β} . Since M_{α} is isomorphic with the Boolean algebra of all subsets of the set of all atoms of M_{β} , for arbitrary P_{α} of M_{α} there exists a subset of the set of all atoms of M_{α} which satisfies $P_{\alpha} = \bigcup \{A(a_{\alpha}, b_{\alpha})\}$ $\leq P_{\alpha} \}$. This is held in M_{β} , too. We denote the set of atoms correspond with P_{α} ϵM_{α} , $P_{\beta} \epsilon M_{\beta}$ by $\mathcal{O}(P_{\alpha})$, $\mathcal{O}(P_{\beta})$, respectively. Then P_{α} corresponds to P_{β} if and only if $\mathcal{O}(P_{\alpha})$ corresponds with $\mathcal{O}(P_{\beta})$ by correcpondence $\tau^{\bullet}(\text{or } \phi^{\bullet})$:

for
$$P_{\alpha} = \bigcup \{A(a_{\alpha}, b_{\beta}) \in \mathcal{O}(P_{\alpha})\}$$
 and
 $P_{\beta} = \bigcup \{A(a_{\beta}, b_{\beta}) \in \mathcal{O}(P_{\beta})\},$
 $\mathcal{O}(P_{\alpha}) \longleftrightarrow \mathcal{O}(P_{\beta})$ by τ^{*} (or ϕ^{*})

$\iff P\alpha \longleftrightarrow P\beta .$

And obviously the correspondence between the elements of M_{α} and the elements of M_{β} is isomorphism between M_{α} and M_{β} from $P_{\alpha} \leq P_{\gamma}$ if and only if $\mathcal{O}(P_{\alpha})$ $\leq \mathcal{O}(P_{\gamma})$.

COROLLARY. There exists a fixed set α which satisfies M_{α} is latticeisomorphic with 2^{α} for each α .

PROOF. To each M_{α} there is a set of atoms $\mathcal{O}(M_{\alpha})$ which satisfies M_{α} is lattice isomopphic with $2^{\alpha(M_{\alpha})}$. The Cardinal number $|\mathcal{O}(M_{\alpha})|$ of $\mathcal{O}(M_{\alpha})$ is equal to $|\mathcal{O}(M_{\beta})|$ for each β because this is the number of combinations of taking 2 from |S|. So that we can take a fixed set \mathcal{O} which satisfies that M_{α} is lattice-isomorphic with 2^{α} by correspondence φ_{α} for each α .

•

18

Mi-Soo Bae

2. The lattice of all partitions on S.

We need a definition about a partly ordered set in this section. We call the partly ordered set P_{α} by a *tree* if P_{α} consist of chains, and in P_{α} a # b for any elements a, b belonging distinct chains.

For any fixed set S we are considered with the set B of the partitions of S. In B we introduce a partial ordering \leq as follows: $\pi \alpha \leq \pi \beta$ for $\pi \alpha$, $\pi \beta$ of B means $\pi \alpha$ is a refinement of $\pi \beta$. Then B is a complete lattice, as well known. We dfine a correspondence between a partition of S and a partly ordered set on S as follows:

for $\pi_{\alpha} \in B$ $\pi_{\alpha} = \{\dots, A_{\alpha}, B_{\alpha}, \dots\}$ corresponds with tree $t_{\alpha} = \{\dots, C(A_{\alpha}), \dots C(B_{\alpha}), \dots\}$.

Where $C(A_{\alpha})$ is a chain orderedset of $A_{\alpha} \subset S$; if A_{α} , B_{α} are components of π_{α} then for arbitrary x of $C(A_{\alpha})$ and arbitrary y of $C(B_{\alpha}) \ x \notin y$ in t_{α} ; and any t_{α} , t_{β} are compatible partial ordered sets each other. We denote the set of this trees by \mathscr{K} . Then this correspondence becomes a order homomorphism form \mathscr{K} to B by similar way in the section one. Since the elements of \mathscr{K} are compatible each other this correspondence is 1-1 correspondence. So that there is an order isomorphism between \mathscr{K} and B.

THEOREM 5. On the fixed set S the lattice of all partitions is lattice isomorphismic with a lattice of all compatible trees on S:

3. Partly ordered groups.

It is well known that any abstract commutative group whose elements are all of infinite order can be made into a linearly ordered group, [1]

Ladislas Fuchs asserted in his paper that a partial ordering on a commutative group has an extension if the above partial ordering is normal. Moreover he proved that every normal partial ordering on a commutative group has a linear ordering which is an extension of the above one. Here I am concerned with the set G of all normal partly ordered groups on a fixed commutative group A.

A partly ordered group A_{α} is a commutative group A, written additively, with a relation < which is defined between some pairs of its elements such that the following postulates hold:

(a)any two of the three relations a > b, a = b, a < b are contradictory; (b)transitivity: a > b and b > c implies a > c; **(c**) homogeneity: a > b implies a + c > b + c for every c in A; (d)normality: $na = a + a + \dots + a \ge o$ for some positive integer n implies $a \ge 0$.

Notes on the set of the partial orderings

Tð-

Conditions (a) and (b) is equivalent with the condition that the relation \leq is a partial ordering. By the conditions (b) and (c) the relations a > b, c > d may be added to get a+c>b+d.

For any A_{α} of G there exists an extension A_{β} of A_{α} which is again a normal partial ordering, [2].

The partial ordering between 2 elements A_{α} , A_{β} of G is defined as follows:

 $A_{\alpha} \leq A_{\beta}$ if and only if A_{β} is an extension of A_{α} .

Let G_1 be any subset of $G_1 = \{\dots, A_7, \dots\}$. We define a new partial ordering P on A as follows:

for any 2 elements a, b of A we put a > b in P if and only if a > b in every A_{τ} in G_{1} .

It is obviously proved that P is again a partly ordered group. Moreover P is normal if all A_{τ} in G_1 are normal. The partial order P is said to be the meet of G_1 , written by $P = \cap A_{\tau}$ ($A_{\tau} \in G_1$). Then G is a meet-complete semilattice.

In this case G contains the commutative group A on which the relation is defined no pair of elements. This is the previous fixed commutative group A. Since A has no element of finite order other than O, identity in commutative group A. A in which no partial order is defined is normal. So we can say that G contains A as the least element.

If we define a normal partial ordering on A as x < y between exact 2 elements x, y of A. By the conditions (a)—(d) of the normal partial ordering on G the fact x < y determine a definite partly ordered group in G such that y - x > 0; x+z < y+z for arbitrary z of A; and $m(y-x) \ge n(y-x)$ if n,m are integers $n \leq m$.

The partly ordered group on A of this type is obviously an atom in G_{\bullet} We denote this by A(x, y).

Mi-Soo Bae

20

LEMMA 7. G is an atomic meet-complete semilattice.

For a linearly ordered group L_{α} of A let us put the set N_{α} of the all normal partly ordered groups $\leq L_{\alpha}$. Then N_{α} is the set of all compatible partly ordered groups and N_{α} contains a unit element L_{α} . Hence N_{α} becomes a complete lattice. Thus we obtain the following lemma.

LEMMA 8. Let N_{α} be the set of all normal partly ordered groups $\leq L_{\alpha}$, for a linearly ordered group L_{α} of A. Then N_{α} becomes an atomic complete lattice.

In N_{α} , $A_{\alpha} \cup A_{\beta} = A_{\gamma}$ is a partly ordered group with a normal transitive relation \leq in A_{γ} such that

$x \leq y$ in A_{α} if and only if $x \leq y$ in A_{α} or $x \leq y$ in A_{β} .

Certainly we need the assumption of normality in the above A_{γ} . And we can assume this assumption without any contradiction. For example if na # 0 in A_{α} for positive integer n and there exists an element x such that $na \ge x$ in A_{α} and $x \ge 0$ in A_{β} then $na \ge 0$ in A_{γ} by transitivity. But we can not prove that the normality of the relation in A_{γ} : $a \ge 0$, eventhough A_{α} and A_{β} are normal.

By the similarway in the section one we obtain the followings.

LEMMA 9. N_{α} is a distributive lattice.

LEMMA 10. For any $A_{\alpha} \in N_{\alpha}$ there exists $A_{\beta} \in N_{\alpha}$ such that $A_{\alpha} \cap A_{\beta} = A$ and $A_{\alpha} \cup A_{\beta} = L_{\alpha}$.

PROOF. Let $\mathcal{A}(A\alpha)$ be the set of all atoms $A(\alpha, b) \leq A\alpha$. Then $A\alpha = \bigcup \{A(\alpha, b) \in \mathcal{A}(A\alpha)\}$. This is proved by the same way in the lemma 5. Now put $A\beta$ as the join of all atoms which belong to $\mathcal{A}(N\alpha) - \mathcal{A}(A\alpha)$ where $\mathcal{A}(N\alpha)$ is the set of all atoms in $N\alpha$. Then we can easily prove that $A\alpha \cap A\beta = A$ and $A\alpha \cup A\beta = L\alpha$, by completeness of $N\alpha$, [1]

THEOREM 6. Na is an atomic complete Boolean Lattice.

COROLLARY. Na is lattice isomorphic with $2^{\alpha(N\alpha)}$.

Notes on the set of the partial orderings

-

August, 1960 Mathematical Department Liberal Arts and Science College Kyungpook University

21

--

•

(1) G. Birkhoff, Lattice theory, rev. ed., New York, (1948).

- (2) Ladislas Fuchs, On the extension of the partial order of groups, Amer. Journal of Math., Vol. LXXII, No. 1, pp. 191-194, (1950).
- (3) E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math., Vol.16, pp.386-389, (1930).
- (4) x # y denotes that x is incomparable to y.