LATTICE ORDERED COMMUTATIVE GROUPS OF THE SECOND KIND

By Tae Ho, Choe

Introduction. By a partially (or lattice) ordered commutative group (po. c. g. or l. o. c. g.) we mean a set G endowed with a binary operation \cdot and a binary relation \leq such that the following axioms are satisfied
(i) G is a commutative group with respect to \cdot.
(ii) G is a partially ordered (or lattice) by \leq.
(iii) if a and b are elements of G such that $a \leq b$, then $ac \leq bc$ for all c in G.

A. H. Clifford [1] has defined the concepts of conserver element and inverter element: in a totally ordered commutative semigroup, an element c is called a conserver if $a < b$ implies $ca \leq cb$, and an inverter if $a < b$ implies $ca \geq cb$. In this note, we define similar concepts as following. Let G satisfy just (i) and (ii) above. In G, an element c is a conserver if $a \leq b$, $a \not< b$ (means a and b are incomparable) implies $ca \leq cb$, $ca \not> cb$, respectively, an inverter if $a < b$ (means $a \leq b$ but $a \not< b$), $a \not< b$ implies $ca \geq cb$, $ca \not< cb$, respectively. G will be called a partially (or lattice) ordered commutative group of the second kind (= po. c. g. II or l. o. c. g. II) if G satisfies (i), (ii) and
(iv) Every element of G is either a conserver or an inverter or not both.

We call an element d a destroyer if d is neither conserver nor inverter, i.e., if d is a destroyer, then there exists a pair of elements x and y in G such that $x < y$ and $dx \not< dy$. We will give some typical examples of a destroyer in § 4. And we shall call po. c. g. II G simply ordered commutative group of the second kind (s. o. c. g. II) if every element of G is either a conserver or an inverter, and G simply ordered.

Let G_i ($i=1, 2, \ldots, n$) be a s. o. c. g. II. By the cardinal product ΠG_i of G_i's we mean the set of all elements (x_1, \ldots, x_n), x_i in G_i, where $(x_1, \ldots, x_n) \leq (y_1, \ldots, y_n)$ if and only if $x_i \leq y_i$ for all i. The class ΠG_i becomes a group if we define $(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = (x_1y_1, \ldots, x_ny_n)$ for x_i, $y_i \in G_i$. Moreover, ΠG_i becomes a l. o. c. g. II. In § 2, we deal some properties of l. o. c. g. II. And in § 3, we shall investigate the necessary and sufficient conditions that a l. o. c. g. II is group-isomorphic to a cardinal product of some s. o. c. g. II's.
§ 2 Some properties of l.o.c.g.II's

Let G be a l.o.c.g.II. Throughout this paper, A, B and D will denote the set of all conservers, inverters and destroyers, respectively. Evidently, $A^2 \subseteq A$, $AB \subseteq B$, $B^2 \subseteq A$, $A^{-1} \subseteq A$, $B^{-1} \subseteq B$, $AD \subseteq D$, $BD \subseteq D$, hence $D^{-1} \subseteq D$, where AB denotes the set of all elements $ab, (a \in A, b \in B)$. Clearly, by definition, A, B and D are disjoint each other.

The following Lemmas are obvious.

[LEMMA 1] A, $A\lor B$ are both subgroups of G.

[LEMMA 2] If $x \in A$ and $y \in B$, then

(i) $x(\alpha \lor \beta) = xa \lor x\beta$ for any $\alpha, \beta \in G$ and dually,

(ii) $y(\alpha \lor \beta) = ya \lor y\beta$ for any $\alpha, \beta \in G$ and dually.

[LEMMA 3] Let G be a l.o.c.g.II. A is a dual ideal (or ideal) of G if and only if $e \prec x$ (or $e \succ x$) implies xeA. Where e is an identity of G.

[PROOF] Assume A is a dual ideal. Then clearly, we see that $e \prec x$ implies xeA. Conversely, assume $e \prec x$ implies xeA. For xeA and $g \in G$, since $e \prec x \leq x \lor g$, we have $x \lor geA$. And we have $a \lor beA$ for any $a, b \in A$. For, since $a \leq a \lor b$, we have $a \lor beA$. Hence $(a \lor b)^{-1} \leq a^{-1}, b^{-1}$. If $c \leq a^{-1}, b^{-1}$, then we see $(a \lor b)^{-1} \lor c \leq a^{-1}, b^{-1}$. Since $(a \lor b)^{-1} \lor c \leq A, a \lor b \leq [(a \lor b)^{-1} \lor c]^{-1}$, i.e. $(a \lor b)^{-1} \lor c \leq (a \lor b)^{-1}$. Hence $e \leq (a \lor b)^{-1}$, i.e. $(a \lor b)^{-1} = a^{-1} \lor b^{-1}$. Thus we have $a \lor b \in A$, i.e. A is a dual ideal, as desired.

A $< B$ means $a < b$ for all $a \in A$, $b \in B$.

[THEOREM 1] Let G be a l.o.c.g.II. Then

(i) A, B are anti-order isomorphic

(ii) D is the sum of some dA's, where d is a destroyer.

(iii) if $e \prec x$ implies xeA, then A is an l-subgroup of G.

[PROOF] Let b be an element of G. Then $bA = B$. For, since $bA \subseteq BA \subseteq B$, we have $bA \subseteq B$. And $b = bb^{-1}b$ for any $b \in B$. Thus $b \in bA$. Hence $B \subseteq bA$. The mapping $f(a) = ba$ ($a \in A, b$ is a fixed element of B) is a one-to-one and anti-order isomorphism by (ii) of Lemma 2, i.e. (i) holds. Since A is a subgroup of G, G is the sum $A \lor bA \lor dA \lor \cdots \lor DA$ (disjoints), where $b \in B$, $d \in D$. Therefore D is the sum of some dA's. (iii) is obvious, by Lemma 1, 2.

A destroyer d is called proper if for any $a < b$ in $G, da \neq db$.

[THEOREM 2] Let G be a po.c.g.II in which any destroyer is proper. Then A and B are convex subsets of G. (a subset S of G is convex if $a, \beta \in S$ and $a \prec x \prec \beta$ implies $x \in S$).
I. atlice orde)”ed commutative group of trle 2nd kind

[PROOF] Suppose $\alpha < x < \beta$ (α, β in A).

(i) If $x \in B$, $ax < \alpha \beta$. Since $\alpha < \beta$ implies $ax > \beta x$, we have $\beta x < \alpha \beta$ i.e. $x < \alpha$.

It is contrary to $\alpha < x$.

(ii) if $x \in D$, $ax < \alpha \beta$. Since $e < \alpha^{-1}x < \alpha^{-1} \beta$ and $\alpha^{-1}x \in D$, we have $\alpha^{-1}x \not= \alpha^{-1} \beta$. while $\alpha^{-1}x < \alpha^{-1} \beta < \alpha^{-1} x \alpha^{-1} \beta$, we have a contradiction. Hence $\alpha x \not\in A$, i.e. A is a convex subset of G.

Suppose $a < y < \beta$ (α, β in B). Since $\alpha^{-1}y \in B$, we have $e > \alpha^{-1}y > \beta \alpha^{-1}$. And $e, \beta \alpha^{-1} \epsilon A$, hence $ya^{-1} \epsilon A$ i.e. ycB.

We proceed now to investigate the distributivity of the subset $A \vee B$.

[THEOREM 3] Let G be a l.o.c.g. II in which $A < B$, and $e < x$ implies xeA. Then the subset $A \vee B$ is a distributive sublattice of G.

[PROOF] Since, by Lemma 3, A is an I-subgroup, and A and B are anti-order isomorphic, we see: A and B are both distributive sublattices of G. If $x, y, \epsilon \alpha A \vee B$, and $x \alpha = y \alpha \epsilon A, x \alpha \epsilon = y \alpha \epsilon A$, then we can easily see $x = y$ for any case. Hence $A \vee B$ is a distributive sublattice of G.

§ 3 Decomposition of po.c.g. II into s.o.c.g. II's Throughout this section, we assume $B < A$. By a simply ordered commutative group (=s.o.c.g.) we mean a group G satisfying (a) G is simply ordered, and (b) $a \leq b$ (a, b in G) implies $ac \leq !c$ for any $c \in G$. [3]. By a simply ordered commutative group of the second kind (=s.o.c.g. II), we mean a group G satisfying (a) G is simple ordered, and (b) every element of G is either a conserver or an inverter.

We can easily see that the set A of all conservers of a s.o.c.g. II becomes a s.o.c.g. Let B denote the set of all inverters of a s.o.c.g. II. And assume also $B < A$ in this section.

Now we shall investigate the condition that po.c.g. II is to be a cardinal product of some s.o.c.g. II's.

Before beginning our study, we state the following Lemma similarly to the way used by A.H. Clifford in [1].

we shall call an element ϵ unit element in G if $\epsilon^2 = e$.

[LEMMA 4] For given a s.o.c.g. G, we can construct a s.o.c.g. II with an inverter unit element.

[PROOF] Let ρ be a convex congruence relation (see [1]) in G, and k an element of G, such that $x \rho y$ implies $kx = ky$, Since G_1 is a group, we see $x = y$ if $x \rho y$. Let G_2 be the set of congruence classes of G_1 mod ρ, and let ϕ be the
canonical mapping (see [1]) of \(G_1 \) onto \(G_2 \). The order relation in \(G_2 \) is defined as the followings: \(\phi(x) < \phi(y) \) if and only if \(x > y \) in \(G_1 \).

Let \(G = G_1 \sqcup G_2 \) (disjoint) and order \(G \) so that \(G_2 < G_1 \) Define product in \(G \) as the followings: for \(x, y \in G_1 \), \(x \phi(y) = \phi(xy) \), \(\phi(x) \phi(y) = xy \).

We now show that the above-defined \(G \) is a s.o.c.g. II as desired. To see that \(G \) is a group. We first investigate the associativity of \(G \) with respect to above product; for example

\[
\phi(x)y \cdot \phi(z) = \phi(xy) \cdot \phi(z) = x \cdot yz = \phi(x) \cdot \phi(yz) = \phi(x) \cdot y \phi(x) \\
\phi(x) \phi(y) \cdot \phi(z) = \phi(xy) \phi(z) = \phi(xy \cdot z) = \phi(x) \cdot yz = \phi(x) \cdot \phi(y) \phi(z)
\]

And for any \(\phi(x) \in G_2 \), we have \(\phi(x) \phi(x^{-1}) = e \) i.e. \(\phi(x^{-1}) = (\phi(x))^{-1} \). Hence we see that \(G \) becomes a group with respect to the product of \(G_1 \) and above-defined products. And we easily see that every element of \(G_1 \) is a conserver and every element of \(G_2 \) an inverter in \(G \). And clearly, \(\phi(e) \) is an inverter unit of \(G \).

In the n-dim. Euclidean space, the subset

\[
F_n = \{ (1,1,\ldots,1), (-1,1,\ldots,1), (1,-1,\ldots,1), \ldots, (-1,-1,\ldots,-1) \}
\]

becomes a l.o.c.g. II of order \(2^n \), if we define product and order relations in \(F_n \) as followings:

\[
(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (a_1b_1, \ldots, a_nb_n) \\
(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n) \text{ if and only if } a_i \leq b_i \text{ for all } i.
\]

Clearly, the element \((-1,-1,\ldots,-1)\) is an inverter unit element of \(F_n \). We call \(F_n \) fundamental l.o.c.g. II.

[THEOREM 4] Let \(G \) be a p.o.c.g. II with an inverter unit element. And let \(G \) be group-isomorphic to a cardinal product of \(n \) s.o.c.g. II's with an inverte unit element. Then

(i) The set \(A \) of all conservers of \(G \) is group-isomorphic to a cardinal product of \(n \) s.o.c.g.'s, and \((G:A) = 2^n\).

(ii) There exists a subgroup \(\mathcal{Y}_n = \{ f_1(e), f_2, \ldots, f_3^n \} \) of \(G \) such that \(\mathcal{Y}_n \) is isomorphic to \(F_n \), and \(f_i f_j \notin A \) (\(i \neq j \)).

Conversely, if (i) and (ii) hold in \(G \), then we can construct a l.o.c.g. II which is a cardinal product of \(n \) s.o.c.g. II's such that is group-isomorphic to \(G \).
Lattice ordered commutative group of the 2nd kind

[PROOF] Let G be a cardinal product ($=\Pi G_i$) of n s.o.c.g. II G_i's. Let A_i be the set of all conservers of G_i. Then we easily see that A is cardinal product ΠA_i of A_i's. Since A_i is a s.o.c.g., A is the cardinal product of n s.o.c.g.'s. Let ε_i, e_i be an inverter unit, an identity of G_i, respectively. Then we easily see that A is cardinal product ΠA_i of A_i's. Since A_i is s.o.c.g., A is the cardinal product of n s.o.c.g.'s. Let ε_i, e_i be an inverter unit, an identity of G_i, respectively. Then we easily see that A is cardinal product ΠA_i of A_i's. Since A_i is a s.o.c.g., A is the cardinal product of n s.o.c.g.'s. Let ε_i, e_i be an inverter unit, an identity of G_i, respectively. Then we easily see that A is cardinal product ΠA_i of A_i's. Since A_i is s.o.c.g., A is the cardinal product of n s.o.c.g.'s.

Let $\mathcal{Y}_n = \{(a_1, \ldots, a_n) | a_i = e_i \text{ or } \varepsilon_i\}$ of ΠG_i is a sub-l.o.c.g. II of order 2^n, and moreover \mathcal{Y}_n is isomorphic to F_n. If (a_1, \ldots, a_n) and (b_1, \ldots, b_n) are two distinct elements of \mathcal{Y}_n, then $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) \in \Pi A_i$. Since $(a_1, \ldots, a_n)^{-1} = (a_1, \ldots, a_n)$ for any $(a_1, \ldots, a_n) \in \mathcal{Y}_n$, $(a_1, \ldots, a_n) \equiv (b_1, \ldots, b_n)$ for mod ΠA_i. On the other hand, if $(x_1, \ldots, x_n) \in \Pi G_i$, then there exists some elements (a_1, \ldots, a_n) of \mathcal{Y}_n such that $(x_1, \ldots, x_n) = (a_1, \ldots, a_n)$ for mod A. Therefore $(G: A) = 2^n$. Hence (i) and (ii) hold in G.

Conversely, Assume (i) and (ii) hold in given p.o.c.g. II G. By (ii), the set A of G is group-isomorphic to a cardinal product ΠA_i of n s.o.c.g. A_i's. By Lemma 5, we can construct a s.o.c.g. II G_i with an inverter unit element from each A_i. Now we must prove that G is group-isomorphic to the cardinal product ΠG_i of G_i's. To see this, by the foregoing way, we make \mathcal{Y}_n of ΠG_i, so that $\mathcal{Y}_n \cong F_n$. By (ii), \mathcal{Y}_n of G is isomorphic to F_n. Thus $\mathcal{Y}_n \cong \mathcal{Y}_n$. Since $G = A \vee A \vee \cdots \vee f_n A$, where $f_1 \in \mathcal{Y}_i$, and $\Pi G_i = (\Pi A_i) \vee f_1 (\Pi A_i) \vee \cdots \vee f_n (\Pi A_i)$, where $f_i \in \mathcal{Y}_i$, the mapping: $f_i a \rightarrow f_i a$ is a group-isomorphism of G onto ΠG_i (a in A_i in ΠA_i). Where f_i corresponds to f_i by $\mathcal{Y}_n \cong \mathcal{Y}_n$, and a corresponds to a by $A \cong \Pi A_i$. For, if $f_i b \rightarrow f_i b$ (b in A_i in ΠA_i), then $(f_i a) \cdot (f_i b) = f_i a b = f_i c \rightarrow f_i c = f_i f_i a b = (f_i a) \cdot (f_i b)$, where f_i and f_j are in \mathcal{Y}_n, $a b = c$ in A_i. Clearly, the mapping is one-to-one. Hence G is group-isomorphic to ΠG_i.

§ 4 Examples

[EXAMPLE 1] Let $E_n = \{(a_1, \ldots, a_n) | a_i(\neq 0) \text{ is a real number}\}$. And we define order and product relations in E_n as the followings:
Then E_n is a l.o.c.g. II with destroyers which are not proper.

[EXAMPLE 2] In the E_n, if we define order relation as followings $(a_1, \ldots, a_n) \leq (b_1, \ldots, b_n)$ if and only if either $a_i = b_i$ for all i or $a_i < b_i$ (but $a_i \neq b_i$) for all i. Then E_n is a l.o.c.g. II. And every destroyer is proper.

[EXAMPLE 3] Let G be the set of all one valued real functions $f(x)$ and it's inverse function $f^{-1}(x)$ defined on $[0,1]$ which are having at most finite number discontinuous points, and $f(x) \equiv 0$ and $f^{-1}(x) \equiv 0$ for all $x \in [0,1]$. Then G becomes a group under ordinary product of functions. Moreover one defines the order in G such that $f(x) \leq g(x)$ means $f(x) \leq g(x)$ for all x on $[0,1]$. Then G is a l.o.c.g. II with destroyers which are not proper.

[EXAMPLE 4] In the G of example 3, one defines the order in G such that $f(x) \leq g(x)$ means either $f(x) = g(x)$ or $f(x) < g(x)$ for all x in $[0,1]$. Then every destroyer in G is proper.

Dec. 21, 1960
Mathematical Department
Liberal Arts and Science College
Kyungpook University

REFERENCES

