ON A CONTINUOUS MAPPING BETWEEN PARTIALLY ORDERED SETS WITH SOME TOPOLOGY

By Tae Ho Choe

1. Introduction and Notations

Let P be a partially ordered set. By the interval topology of P, we mean that defined by taking the closed intervals $[a, b]$, $[-\infty, a]$, and $[a, \infty]$ of P as a sub-base of closed sets. Let f be a mapping of a partially ordered set P, into another partially ordered set P_n. In this paper, we first obtain a necessary and sufficient condition that f be a continuous in their interval topologies. This condition, stated in theorem 1, can be applied to show that if f is a complete isotone of a complete lattice into a complete lattice, then f is a continuous in their interval topologies.

N. Funayama [2] has introduced an imbedding operator ϕ in the family of subsets of P, and has defined a completion P_ϕ of P by the imbedding operator ϕ. And he has obtained a lot of interesting results that P is imbedded into some complete lattice. In theorem 2 we consider conditions under which P is continuously imbedded into a complete lattice with respect to their interval topologies.

T. Naito [3] has introduced the concept of CP-ideal topology. In §3, we shall deal with similar results of §2 with respect to CP-ideal topology.

We shall use I, I_α, $I_{\alpha \beta}$, J, J_α, $J_{\alpha \beta}$ to denote closed intervals in §2 and to denote CP-ideals or dual CP-ideals in §3. We denote the join and the meet of two elements x and y of a lattice by $x \vee y$ and $x \wedge y$ respectively, the join and the meet of all elements of a set $\{a_\alpha | \alpha \in \Delta\}$ by $\sup_{\alpha \in \Delta} a_\alpha$ and $\inf_{\alpha \in \Delta} a_\alpha$ respectively. $A \cup B$ and $\vee_{\alpha \in \Delta} X_\alpha$ will be used to denote the set union of two sets A and B, and of sets of the family $\{X_\alpha | \alpha \in \Delta\}$, and $A \cap B$ and $\wedge_{\alpha \in \Delta} X_\alpha$ are the set intersections of them.

Finally, the complement of a set A will be denoted by A^c.

2. Interval topology.

We here note that if a subset S of P is a closed set in it's interval topology, then S may be expressed as an intersection of the sets which are unions of a finite number of closed intervals in P:
\[S = \bigwedge_{a, \beta} \{ \bigvee_{\alpha} I_{\alpha\beta} \} \]

where \(I_{\alpha\beta} \) is the form of \([a, b], [a, +\infty], \) or \([-\infty, b] \). Thus an open subset \(O \) in \(P \) is expressed as

\[O = \bigvee_{a, \beta} \{ \bigwedge_{\alpha} I_{\alpha\beta}^c \} \]

Let \(P \) be a partially ordered set. A subset \(S \) of \(P \) is called to be covered by a finite closed intervals of \(P \) if there exist a finite number of closed intervals \(I_n \) such that \(S \subseteq \bigcup_n I_n \).

We first prove the following theorem:

THEOREM 1. Let \(P_1 \) and \(P_2 \) be two partially ordered sets, and \(f \) a mapping of \(P_1 \) into \(P_2 \). \(f \) is continuous in their interval topologies if and only if for any closed interval \(J \) of \(P_2 \) and any element \(x \) of \(P_1 \) such that \(x \in f^{-1}(J) \), there exists a covering of \(f^{-1}(J) \) by means of a finite number of closed intervals none of which contains \(x \).

PROOF. Suppose that \(f \) is a continuous mapping of \(P_1 \) into \(P_2 \). And \(x \in f^{-1}(J) \) for a closed interval \(J \) of \(P_2 \) and an element \(x \) of \(P_1 \). Since \(f^{-1}(J) \) is a closed set in \(P_1 \), it may be expressed as following \(f^{-1}(J) = \bigwedge_{\alpha} \{ \bigvee_{\beta} I_{\alpha\beta} \} \), where \(I_{\alpha\beta} \) is a closed interval in \(P_1 \). Thus \(x \in \bigvee_{\beta=1}^{n_{\alpha}} I_{\alpha\beta} \) for some \(\alpha \). Moreover \(f^{-1}(J) \subseteq \bigvee_{\alpha} I_{\alpha\beta}^c \) and \(x \in I_{\alpha\beta}^c \) (\(1 \leq \beta \leq n_{\alpha} \)). Conversely, for an element \(x \) of \(P_1 \), let \(O_2 \) be a neighborhood of \(f(x) \) in \(P_2 \). It suffices to show that for some open subset \(O \) containing \(x \), \(O \subseteq f^{-1}(O_2) \). Thus we may assume that \(O_2 \) is an open set in \(P_2 \), which may be expressed as \(O_2 = \bigvee_{\beta=1}^{n_{\alpha}} I_{\alpha\beta}^c \), where \(J_{\alpha\beta} \) is a closed interval or the empty set or \(P_2 \). And there exists a closed intervals \(J_{\alpha\beta} \) such that \(f(x) \in J_{\alpha\beta} \), i.e., \(x \in f^{-1}(J_{\alpha\beta}) \) for some \(\alpha \) and all \(\beta \) corresponding to \(\alpha \). By the hypotheses, there are a finite number of closed intervals \(I_{\alpha}^{\beta} \) (\(\alpha \)) such that \(f^{-1}(J_{\alpha\beta}) \subseteq \bigvee_{\beta} I_{\alpha\beta}^{\beta} \), i.e., \(\bigvee_{\alpha} I_{\alpha\beta}^{\beta} \subseteq f^{-1}(J_{\alpha\beta}) \) for each \(\beta \). On the other hand, \(x \in \bigwedge_{\beta=1}^{n_{\alpha}} (\bigvee_{\alpha} I_{\alpha\beta}^c) \subseteq \bigwedge_{\beta=1}^{n_{\alpha}} f^{-1}(J_{\alpha\beta}^c) \subseteq f^{-1}(O_2) \), which completes the proof.
A continuous mapping

A mapping f of a partially ordered set P_1 into P_2 is called a complete isotone if $\sup_{x \in d} x \leq \sup_{x \in d} f(x)$ exist and $x = \sup_{x \in d} x$ implies $f(x) = \sup_{x \in d} f(x)$, and it's dual. Theorem 1 can be applied to show the following

COROLLARY 1. Let f be a complete isotone of a complete lattice P_1 into a complete lattice P_2. Then f is continuous in their interval topologies.

PROOF. Let J be a closed interval in P_2 and x an element in P_1 such that $x \notin f^{-1}(J)$. We shall show that there is a closed interval I in P_1 not containing x such that $f^{-1}(J) \subseteq I$. If the set $S = \{y \in P_1 | f(y) \in J\}$ is empty, then we may take the empty set as I. Therefore we may assume that S is non-empty. Let $a = \inf S$, $b = \sup S$. If we suppose $x \in [a, b]$, then $f(x) \in J$ because f is a complete isotone. It follows that $x \in f^{-1}(J)$ which is contrary. Clearly we see that $f^{-1}(J) \subseteq [a, b]$, which completes the proof.

N. Funayama [2] has defined an imbedding operator ϕ in the family of subsets of a partially ordered set P. A is called ϕ-closed if $\phi(A) = A$. All the ϕ-closed sets form a complete lattice P_ϕ under set inclusion, P_ϕ is called the completion of P by the imbedding operator ϕ. And he has proved that if a collection $\Omega = \{A_\lambda\}$ of subsets of P satisfies the following conditions: (i) every A_λ is an ideal of P, i.e., $\lambda \in A_\lambda$ and $x \leq a$ then $x \in A_\lambda$, (ii) every principal ideal is a member of Ω, (iii) Ω is M-complete, i.e., for any subset $\{B_\lambda\}$ of Ω, $\wedge B_\lambda \in \Omega$, (iv) $P \in \Omega$, then there exists an uniquely determined imbedding operator ϕ on P such that $\Omega = P_\phi$.

The theorem 2 of [2] says that let ϕ be an imbedding operator on P, then P is imbedded into P_ϕ by $f : f(a) = \langle a \rangle$ (=principal ideal generated by a), where f is ϕ-isomorphism, i.e., $f(a) \geq f(b)$ if and only if $a \geq b$.

The lemma 2 and theorem 2 of [2] and theorem 1 give us the following lemma:

LEMMA 1. Let P be a partially ordered set. If there is a collection Ω satisfying (i)~(iv) in P, and if the mapping $f : f(a) = \langle a \rangle$ of P into Ω satisfies the hypothesis of theorem 1, then P is continuously imbedded into the complete lattice P_ϕ ($= \Omega$).

Hence, by above lemma 1 and corollarily, we have

THEOREM 2. Under the hypotheses of lemma 1, if g is a complete isotone
of \(P \) into a complete lattice \(L \), then \(P \) is continuously imbedded in \(L \) by \(g \cdot f \) in to \(L \) in their interval topologies.

3. CP-ideal topology

In this section, we denote \(P \) to be a lattice. An ideal \(I \) is said to be a prime ideal if and only if \(x \cap y \) implies \(x \in I \) or \(y \in I \). A prime ideal \(I \) is called a CP-ideal if and only if the following condition holds: if \(\{ x_\alpha | \alpha \in A \} \subseteq I \) and there exists \(\sup x_\alpha \), then \(\sup x_\alpha \in I \). Dually, a dual prime ideal and a dual CP-ideal are defined (T. Naito [3]). The union of \{ all CP-ideals of \(P \) \}, \{ all dual CP-ideals of \(P \) \} and \(\emptyset \) is denoted by \(\mathcal{L}P \), where \(\emptyset \) is the empty set. We recall that the CP-ideal topology of a lattice \(P \) is that defined by taking the elements of \(\mathcal{L}P \) as a sub-base of closed sets of the space \(P \).

In the same way as in §2, We can prove the following

THEOREM 3. Let \(P_1 \) and \(P_2 \) be two lattices, and \(f \) is mapping of \(P_1 \) into \(P_2 \). \(f \) is continuous in their CP-ideal topologies if and only if for any member \(J \) of \(\mathcal{L}P \) of \(P_2 \) and any element \(x \) of \(P_1 \) such that \(x \in f^{-1}(J) \) there exists a covering of \(f^{-1}(J) \) by means of a finite number of members of \(\mathcal{L}P \) none of which contains \(x \).

As a corollary of the theorem 3, we also have

COROLLARY 2. Let \(f \) be a complete isotone of a complete lattice \(P \), into a complete lattice \(P_2 \). Then \(f \) is a continuous mapping of \(P_1 \) into \(P_2 \) in their CP-ideal topologies.

PROOF. Let \(J \) be a member of \(\mathcal{L}P \) of \(P_2 \) and \(x \) an element in \(P_1 \) such that \(x \in f^{-1}(J) \). We shall show that there exists a member \(I \) of \(\mathcal{L}P \) of \(P_1 \) not containing \(x \) such that \(f^{-1}(J) \subseteq I \). We consider \(J \) into three cases:

(i) \(J \) is a nonvoid CP-ideal. Let \(S = \{ y_r | f(y_r) \in J \} \). If \(S = \emptyset \), i.e. \(f^{-1}(J) = \emptyset \) we then take the empty set as \(I \). And we may assume \(S \neq \emptyset \). Set \(a = \sup S \). Then \(\langle a \rangle \) is a CP-ideal of \(P_1 \). For, if \(u \cap v \in \langle a \rangle \), then \(f(u) \cap f(v) \subseteq f(u) \cap f(v) = J \). Thus we have either \(f(u) \in J \) or \(f(v) \in J \), i.e. \(u \in \langle a \rangle \) or \(v \in \langle a \rangle \). It follows that \(\langle a \rangle \) is a prime ideal. And if \(\{ x_\alpha | \alpha \in A \} \) and there exists \(\sup x_\alpha \), then clearly \(\sup x_\alpha \in \langle a \rangle \). Moreover we can see easily: \(x \in \langle a \rangle \) and \(f^{-1}(J) \subseteq \langle a \rangle \).

(ii) \(J \) is a nonvoid dual CP-ideal. This is a dual of (i).
A continuous mapping

(iii) \(J = \phi \). In this case, we may take the empty set as \(I \). This proves our corollary.

We recall (Funayama, [2]) that if a partially ordered set \(P \) is imbedded in a complete lattice \(L \) by a mapping \(\theta \), \(\theta \) is called \(J \)-density if any element \(x \) in \(L \) can be represented as a join of elements of \(\theta(P) \), that is \(x = \sup \theta(a_r) \), where \(a_r \in P \). And in [2], he noted that if \(P \) is imbedded in \(L \) \(J \)-densely by \(\theta \), then \(\theta(a) = \inf_{r} \theta(a_r) \) in \(L \) if and only if \(a = \inf_{r} a_r \) in \(P \).

Lemma 2. Let a lattice \(P \) be imbedded in a complete lattice \(L \) \(J \)-densely by \(\theta \). Suppose that \(\{x_a | a \in A\} \subset P \) and there exists \(a = \sup x_a \) then \(\theta(a) = \sup_{a \in A} \theta(x_a) \).

Then \(\theta \) is a continuous mapping of \(P \) into \(L \) in their CP-ideal topologies.

Proof. It is sufficient to show that for some CP-ideal \(J \) of \(L \), \(S = \{x \in P | \theta(x) \in J\} \) is also a CP-ideal of \(P \). In fact, clearly \(S \) is a prime ideal of \(P \). And if \(\{x_a | a \in A\} \subset S \) and there exists \(\sup x_a \) in \(P \), then we have \(\sup x_a \in S \) because \(\theta(\sup x_a) = \sup_{a} \theta(x_a) \in J \). Hence \(S \) is a CP-ideal of \(P \). And dually.

Theorem 2 of [2] and lemma 2 give us the following

Theorem 4. Let \(\phi \) be an imbedding operator on a lattice, and \(\phi^*: \phi^*(a) = (a) \) be the mapping of \(P \) into \(P \) such that \(\phi^*(x) = \sup_{a \in A} \phi^*(x_a) \) if \(x = \sup_{a \in A} x_a \) exists.

And if \(f \) be a complete isotope of \(P \) into a complete lattice \(L \), then \(P \) is continuously imbedded into \(L \) in their CP-ideal topologies.

June, 1962
Mathematical Department
Kyungpook University
Taegu, Korea

References

