NÓTE ON INFINITESIMAL TRANSFORMATION
 IN NORMAL CONTACT SPACE

By Jae Koo Ahn

Introduction. Recently, S. Sasaki defined the notion of ($\phi ; \xi ; \eta, g$)-structure of a differentiable manifold[1], and he and Y. Hatakeyama studied its geometric properties[2]. Furthermore, S. Sasaki, Y. Hatakeyama and M. Okumuia defined a normal contact space and discussed many interesting theorems in this space[3]. In this space, problems concerning infinitesimal transformations were studied by M. Okumura and S. Tano[4], [5].

In the present note we investigate the relations among several infinitesimal transfomations.
In section 1, we state the fundamental properties of the normal contact space and the definitions of these infinitesimal transformations as the preparation of this note.
We show the results of this note in section 2 and prove them in section 3 successively.

1. Preliminaries. On an $N(=2 n+1)$-dimensional real differentiable manifold, if there exist a tensor field ϕ_{j}^{i}, contravariant and covariant vector fields ξ^{i} and η_{i} satisfying the relations
(1.1) $\quad \xi^{i} \eta_{i}=1$,
(1.2) $\quad \operatorname{rank}\left\|\phi_{j}^{i}\right\|=n-1$,
(1.3) $\phi_{j}^{i} \xi^{j}=0$,
(1.4) $\phi_{j}^{i} \eta_{i}=0$,
(1.5) $\quad \phi_{j}^{i} \phi_{k}^{\mathrm{j}}=-\delta_{k}^{i}+\xi^{i} \eta_{k}$,

Inen we call the notion ($\phi_{j}^{i}, \xi^{i}, \eta_{j}$) a (ϕ, ξ, η)-structure and the manifold a manifold with a (ϕ, ξ, η)-structure. It is well known that a manifold with a $(\phi, \xi$, r_{i}) -structure always admits a positive definite Riemannian metric tensor $g_{j i}$ such
that

$$
\begin{equation*}
g_{j i} \dot{\xi}^{j}=\eta_{i}, \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
g_{j i} \phi_{k}^{j} \phi_{h}^{i}=g_{k h}-\eta_{k} \tau_{h} . \tag{1.7}
\end{equation*}
$$

We call such a notion ($\phi_{j}^{i}, \xi^{i}, \eta_{j}, g_{j i}$) satisfying above properties a (ϕ, ξ, η, g) structure and the manifold a manifold with a (ϕ, ξ, η, g)-stucture. In this note, we always consider such a Riemannian metric tensor, and thus we use a notation η^{i} in stead of ξ^{i}.

Next, let M be a differentiable manifold with a co.ltact structure

$$
\eta=\eta_{i} d x^{i} .
$$

If we define $\phi_{j i}$ by

$$
2 \phi_{j i}=\partial_{j} \eta_{i}-\partial_{i} \eta_{j}, \quad\left(\eta_{i}=\partial / \partial x^{\prime}\right),
$$

we can introduce a Riemannian metric $g_{j i}$ such that

$$
\begin{equation*}
\phi_{i}^{h}=g^{h r} \phi_{i r} \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{i}=g^{i r} \eta_{r} \tag{1.9}
\end{equation*}
$$

where $\eta_{i}, g_{j i}, \phi_{j}^{i}$ define a (ϕ, ξ, η, g)-structure.
S. Sasaki and Y. Hatakeyama iatroduce four important tensor fields $N_{j i}{ }^{h}, N_{j i}$, N_{i}^{j} and N_{j}, and if $N_{j i}{ }^{h}$ vanishes, the other three tensors vanish. We call the contact space with vanishing $N_{j i}{ }^{h}$ a normal contact space.

In a normal contact space, the following identities are always valid[3],
(1.10)

$$
\nabla_{j} \eta_{i}=\phi_{j i},
$$

(1.11) $\quad \nabla_{k} \phi_{j i}=\nabla_{k} \nabla_{j} \eta_{i}=\eta_{j} g_{i k}-\eta_{i} g_{j k}$,
(1.12) $\quad \eta_{r} R_{l k j}^{r}=\eta_{l} g_{j k}-\eta_{k} g_{j l}$,
(1.13) $\nabla_{l} \nabla_{i k} \phi_{j t}=\phi_{l j} g_{i k}-\phi_{l i} g_{j k}$

$$
\begin{equation*}
-\phi_{j r} R_{l k i}^{r}-\phi_{r i} R_{l k j}^{r}=\phi_{l j} g_{i k}-\phi_{k j} g_{i l}-\phi_{l i} g_{j k}+\phi_{k i} g_{j l}, \tag{1.14}
\end{equation*}
$$

where $R_{l k j}{ }^{i}$ is a Riemannian curvature tensor, and ∇_{j} is the differentiation with respect to Riemannian connection.

In a Riemannian space, if the vector field v^{i} satisfies

$$
\begin{equation*}
£_{v} g_{j i} \equiv \nabla_{j} v_{i}+\nabla_{i} v_{j}=0, \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
£_{v} g_{j i} \equiv \nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \sigma g_{j i} \tag{1.16}
\end{equation*}
$$

$$
£_{v}\left\{\begin{array}{l}
h \tag{1.17}\\
j i
\end{array}\right\} \equiv \nabla_{j} \nabla_{i} v^{h}+R_{r j i}^{h} v^{r}=0,
$$

and

$$
\begin{equation*}
£_{v}\binom{h}{j i} \equiv \nabla_{j} \nabla_{i} v^{h}+R_{r j i}^{h} v^{r}=\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}, \tag{1.18}
\end{equation*}
$$

then the vector v^{i} is called respectively an infinitesimal isometry (or Killing vecto:), an infinitesimal conformal transformation (or conformal Killing vector), an infi.itosimal affine collincation anl an infinitesimal projective transformation, where σ is a certain scalar function called by an associated scalar of the transiormation and ρ_{j} is a certain vector field called by an associated vector of the transformation. If v^{i} admits a conformal Killing, then it holds

$$
\begin{align*}
£_{v}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\} & \equiv \nabla_{j} \nabla_{i} v^{h}+R_{r j i}^{h} v^{r} \tag{i.19}\\
& =\sigma_{j} \delta_{i}^{h}+\sigma_{i} \delta_{j}^{h}-\sigma^{h} g_{j i}, \quad\left(\sigma_{i}=\partial_{i} \sigma\right) .
\end{align*}
$$

Next, let us recall the identities of Lie derivatives. For any vector field v^{i} and tensor field $T_{j i}{ }^{h}$, we have the following identities;

$$
\begin{equation*}
£_{v} T_{j i}^{h}=v^{a} \nabla_{a} T_{j i}^{h}+T_{a i}^{h} \nabla_{j} v^{a}+T_{j a}^{h} \nabla_{i} v^{\dot{a}}-T_{j i}^{a} \nabla_{a} v^{h}, \tag{1.20}
\end{equation*}
$$

$$
\begin{align*}
& £_{v} \nabla_{m} T_{j i}{ }^{h}-\nabla_{m} £_{v} T_{j i}{ }^{h} \tag{1.21}\\
& \quad=-T_{a i}{ }^{h} £_{v}\left\{\begin{array}{c}
a \\
j m
\end{array}\right\}-T_{j a}{ }^{h} £_{v}\left\{\begin{array}{c}
a \\
i m
\end{array}\right\}+T_{j i}{ }^{a} £_{v \cdot}\left\{\begin{array}{c}
h \\
a m
\end{array}\right\}, \\
& \nabla_{k} £_{v}\left\{\begin{array}{c}
h \\
j i
\end{array}\right\}-£_{v} \nabla_{k}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}=£_{v} R_{k j i}{ }^{h} . \tag{1.22}
\end{align*}
$$

In a normal contact space, if the vector field v^{i} satisfies

38
(1.23)

$$
\boldsymbol{e}_{v} \eta_{i}=\tau \eta_{i},
$$

and
(1.24) $£_{\nu} \phi_{j}^{i}=0$,
then we call the vector v^{i} an infinitesimal contact transformation (τ is an associated scalar of the transformation) and an infinitesimally ϕ-invariant transformation repectictively, and especially, when τ vanishes v^{i} is called by an infinitesimal strict contact transformation.

Transvecting (1.23) with η^{i}, we have

$$
\begin{equation*}
\tau=\eta^{i} £_{v} \eta_{i}=\eta^{c} \eta^{b} \nabla_{c} v_{b} . \tag{1.25}
\end{equation*}
$$

2. Results. In this section, we summarize the results of the present note as followings:
(I). In a contact space, if an infinitesimal contact transformation admits an infinitesimal isometry, then it is strict and the length of the vector field η^{i} is invariant under the infinitesimal isometry.

Next, we consider the normal contact space, and then, do not refer the space in the followings.
(I). If an infinitesimal isometry v^{i} is infinitesimally ϕ-invariant, then it admits an infinitesimal strict contact transformation and the length of the vector v^{i} is constant along the curve tangented to direction η^{i}.
(这). If an infinitesimal affine collineation is infinitesimally ϕ-invariant, then it admits an infinitesimal strict contact transformation and an infinitesimal isometry.
(V). If an infinitesimal projective transfor mation is infinitesimally ϕ-invariant, then it admits a conformal Killing.
(V). If a conformal Killing is infinitesimally ϕ-invariant, then it admits ant infinitesimal isometry.
(V). If an infinitesimal contact transformation v^{i} is infinitesimally ϕ-invariant, then its associated scalar τ is represented by

$$
\begin{equation*}
\tau=\frac{2}{N+1} \nabla_{a} v^{a} . \tag{2.1}
\end{equation*}
$$

(VI). If an infinitesimal contact transformation admits an infinitesimal affine collineation, then its associated scalar τ is represented by (2.1) and constant along the curve tangented to direction η^{i}. If an infinitesimal isometry v^{i} admits an infinitesimal contact tranformation, or if an infinitesimal affine collineation admits an infinitesimal strict contact transformation, then it holds

$$
\begin{equation*}
\nabla_{a} v^{a}=0 \tag{2.2}
\end{equation*}
$$

(II). If an infinitesimal contact tranformation v^{i} admits an infinitesimal projective transformation, then its associated scalar τ is represented by (2.1) and a direction $\tau_{k}-2 \rho_{k}$ is orthogoral to the direction η^{i}. Furthermore if the transformat on is strict, then it admits an infinitesimal affine collineation.
(\mathbb{X}). If an infinitesimal contact transformation admits a conformal Killing, then it admits an infinitesimal isometry and strict contact transformation.
3. Proofs. In this section, we prove above results successively.
(I). Let v^{i} be an infinitesimal contact transformation, then we have

$$
\varepsilon_{v} \eta_{j}=\tau \eta_{j} .
$$

Since v^{i} admits an infinitesimal isometry, we have

$$
£_{v} \eta^{i}=\tau \eta^{i} .
$$

Taking Lie derivative of (1.5), we obtain by means of above

$$
\phi_{j}^{i} £_{v} \phi_{k}^{j}+\phi_{k}^{j} £_{v} \phi_{j}^{i}=2 \tau \eta^{i} \eta_{k} .
$$

Transvecting this with $\eta^{k} \eta_{i}$ we have
(3.1) $\quad \tau=0$,
and thus, it is strict.
Form (3.1) and (1.25), we have

$$
\begin{equation*}
\eta^{i} £_{v} \eta_{i}=0 . \tag{3.2}
\end{equation*}
$$

Since v^{i} admits an infinitesimal isometry, we obtain
(3.3) $\quad £_{\nu} \eta^{2}=0$ 。
(II). Taking Lie derivative of (1.5) and v^{i} being infinitesimally ϕ-invariant. we have
(3.4) $\quad \eta^{i} £_{\nu} \eta_{k}+\eta_{k} £_{\nu} \eta^{i}=0$.

Transvecting this with: η_{i}, we have

$$
£_{\nu} \eta_{k}+\eta_{k} \eta_{a} £_{\nu} \eta^{a}=0 .
$$

Since v^{i} admits an infinitesimal isometry, it is reduced into

$$
\begin{equation*}
£_{v} \eta^{k}+\eta^{k} \eta_{a} £_{v} \eta^{a}=0 \tag{3.5}
\end{equation*}
$$

Transvecting this with η_{k}, we have

$$
\eta_{a} £_{v} \eta^{a}=0 .
$$

and thus, we obtain that v^{i} admits an infinitesimal strict contact transformation.
On the other hand, (3.4) is reduced into

$$
\eta_{\vec{k}}\left(v^{a} \nabla_{a} \eta^{i}-\eta^{a} \nabla_{a} v^{i}\right)+\eta^{i}\left(v^{a} \nabla_{a} \eta_{k}+\eta_{a} \nabla_{k} v^{a}\right)=0 .
$$

Transvecting this with η^{k} and taking account of (1.8) and (1.10), we have

$$
v^{a} \phi_{a i}-\eta^{a} \nabla_{a} \dot{v}_{i}=0,
$$

since v^{2} is an infinitesimal isometry. Transvecting this with v^{i}, by virtue of skew-symmetric property of $\phi_{a i}$, we have

$$
v^{j} \eta^{i} \nabla_{i} v_{j}=0,
$$

or

$$
\eta^{a} \nabla_{a} v^{2}=0,
$$

and thus, (I) has been proved.
(III). For any vector v^{i}, it holds

$$
£_{v} \nabla_{k} \phi_{j}^{i}-\nabla_{k} £_{v} \phi_{j}^{i}=\phi_{j}^{a} £_{v}\left\{\begin{array}{c}
i \tag{3.6}\\
k a
\end{array}\right\}-\phi_{a}^{i} £_{v}\left\{\begin{array}{c}
a \\
k j
\end{array}\right\} .
$$

From the assumption, we have

$$
£_{v} \nabla_{k} \phi_{j}^{i}=0
$$

Substituting (1.11) into this, we have

$$
£_{v}\left(\eta_{j} \delta_{k}^{i}-\eta^{i} g_{k j}\right)=0
$$

and it is reduced into

$$
\begin{align*}
& \left(v^{a} \nabla_{a} \eta_{j}+\eta_{a} \nabla_{j} v^{a}\right) \delta_{k}^{i}-\left(v^{a} \cdot \nabla_{a} \eta^{i}-\eta^{a} \nabla_{a} v^{i}\right) g_{k j} \tag{3.7}\\
& \quad-\eta^{i}\left(\nabla_{k} v_{j}+\nabla_{j} v_{k}\right)=\mathbf{0}
\end{align*}
$$

Contracting with respect to i and k, we have

$$
\begin{equation*}
v^{a} \nabla_{a} \eta_{j}+\eta_{a} \nabla_{j} v^{a}=0 \tag{3.8}
\end{equation*}
$$

or

$$
£_{v} \eta_{j}=0,
$$

and hence, we have proved former of (III).
Next, in consequence of (3.8), (3.7) is reduced into

$$
\eta^{i}\left(\nabla_{k} v_{j}+\nabla_{j} v_{k}\right)=-\left(v^{a} \nabla_{a} \eta^{i}-\eta^{a} \nabla_{a} v^{i}\right) g_{k j}
$$

Transvecting this with η_{i}, we have

$$
\begin{equation*}
\nabla_{k} v_{j}+\nabla_{j} v_{k}=\left(\eta^{c} \eta^{b} \nabla_{c} v_{b}\right) g_{k j} \tag{3.9}
\end{equation*}
$$

In consequence of (1.25) and the former of this theorem, we have

$$
\nabla_{k} v_{j}+\nabla_{j} v_{k}=0
$$

and thus, ($\mathbb{I I}$) has been proved.
(IV). From (3.6) and the assumption we have by means of (1.11)

$$
\begin{align*}
& \left(v^{a} \nabla_{a} \eta_{j}+\eta_{a} \nabla_{j} v^{a}\right) \delta_{k}^{i}-\left(v^{a} \nabla_{a} \eta^{i}-\eta^{a} \nabla_{a} v^{i}\right) g_{k j}-\eta^{i}\left(\nabla_{k} v_{j}+\nabla_{j} v_{k}\right) \tag{3.10}\\
& \quad=\phi_{j}^{a}\left(\rho_{k} \delta_{a}^{i}+\rho_{a} \delta_{k}^{i}\right)-\phi_{a}^{i}\left(\rho_{k} \delta_{j}^{a}+\rho_{j} \delta_{k}^{a}\right)
\end{align*}
$$

Contracting with respect to i and k, we have, in consequence of $\phi_{a}^{a}=0$,

$$
v^{a} \nabla_{a} \eta_{j}+\eta_{a} \nabla_{j} v^{a}=\frac{N}{N-1} \phi_{j}^{a} \rho_{a}
$$

Jae Koo Ahn

Substituting this into (3.10), we have

$$
\begin{aligned}
& \stackrel{N}{N-1} \phi_{j}^{a} \rho_{a} \delta_{k}^{i}-\left(v^{a} \nabla_{a} \eta^{i}-\eta^{a} \nabla_{a} v^{i}\right) g_{k j}-\eta^{i}\left(\nabla_{k} v_{j}+\nabla_{j} v_{k}\right) \\
& \quad=\phi_{j}^{a}\left(\rho_{k} \delta_{a}^{i}+\rho_{a} \delta_{k}^{i}\right)-\phi_{a}^{i}\left(\rho_{k} \delta_{j}^{a}+\rho_{j} \delta_{k}^{a}\right)
\end{aligned}
$$

Transvecting this with η_{i}, we have

$$
\begin{equation*}
\nabla_{k} v_{j}+\nabla_{j} v_{k}=-\frac{1}{N-1} \phi_{j}^{a} \rho_{a} \eta_{k}+g_{k j} \eta^{b} \eta^{a} \nabla_{b} v_{a} \tag{3.11}
\end{equation*}
$$

Interchanging j and k, and subtracting these, we have

$$
\left(\phi_{k}^{a} \eta_{j}-\phi_{j}^{a} \eta_{k}\right) \rho_{a}=0
$$

Transvecting this with η^{j}, we obtain

$$
\phi_{j}^{a} \rho_{a}=0
$$

Form this, $(3,11)$ is reduced into

$$
\nabla_{k} v_{j}+\nabla_{j} v_{k}=\left(\eta^{c} \eta^{b} \nabla_{c} v_{b}\right) g_{k j}
$$

and thus, we have proved (IV).
(V). From (3.6), we have in consequence of the assumption and (1.19)

$$
\begin{aligned}
& v^{a} \nabla_{a} \nabla_{k} \phi_{j}^{i}+\nabla_{a} \phi_{j}^{i} \nabla_{k} v^{a}+\nabla_{k} \phi_{a}^{i} \nabla_{j} v^{a}-\nabla_{k} \phi_{j}^{a} \nabla_{a} v^{i} \\
& \quad=-\phi_{k}^{i} \sigma_{j}+g_{k j} \sigma^{a} \phi_{a}^{i}+\delta_{k}^{i} \phi_{j}^{a} \sigma_{a}-\sigma^{i} \phi_{j k}
\end{aligned}
$$

and from (1.11), it is reduced into

$$
\begin{align*}
& g_{i k} v^{a} \nabla_{a} \eta_{j}-g_{k j} v^{a} \nabla_{a} \eta_{i}-\eta_{i} \nabla_{k} v_{j}+\eta_{a} g_{i k} \nabla_{j} v^{a} \tag{3,12}\\
& \\
& \quad-\eta_{i} \nabla_{j} v_{k}+g_{k j} \eta_{a} \nabla^{a} v_{i} \\
& =-\phi_{k i} \sigma_{j}+g_{k j} \sigma^{a} \phi_{a i}+g_{k i} \sigma_{a} \phi_{j}^{a}-\sigma_{i} \phi_{j k}
\end{align*}
$$

'Transvecting this with $g^{j k} \eta^{i}$, we have

$$
\begin{equation*}
2 \nabla^{a} v_{a}=(N+1) \eta^{c} \eta^{b} \nabla_{c} v_{b} \tag{3.13}
\end{equation*}
$$

On the other hand, since v^{i} admits a conformal Killing, it holds

$$
\begin{equation*}
\nabla_{c} v_{b}+\nabla_{b} v_{c}=2 \sigma g_{c b} \tag{3.14}
\end{equation*}
$$

Transvecting this with $g^{c b}$ and $\eta^{c} \eta^{b}$, then we obtain respectively

$$
\nabla^{a} v_{a}=N \sigma,
$$

and

$$
\eta^{c} \eta^{b} \nabla_{c} v_{b}=\sigma .
$$

Substituting these into (3.13), we have

$$
(N-1) \sigma=0,
$$

or

$$
\sigma=0
$$

and thus, we have proved (V).
(U). For any vector v^{i}, it holds

$$
£_{v} \nabla_{k} \eta_{j}-\nabla_{k} £_{v} \eta_{j}=-\eta_{a} £_{v}\left\{\begin{array}{l}
a \tag{3.15}\\
k j
\end{array}\right\} .
$$

By assumption, from (1.10) and (1.17) this is reduced into

$$
\left(\nabla_{j} v_{a}+\nabla_{a} v_{j}\right) \phi_{k}^{a}-\eta_{j} \nabla_{k} \tau-\tau \nabla_{k} \eta_{j}=-\eta_{a} \nabla_{k} \nabla_{j} v^{a}-v^{s} \eta_{a} R_{s k k_{j}}{ }^{a},
$$

since it holds $\nabla_{k} \eta_{j}=\phi_{k j}=g_{a j} \phi_{k}^{a}$.
Transvecting this with $\phi^{k j}$, we obtain from (1.12)

$$
\left(\nabla_{j} v_{k}+\nabla_{k} v_{j}\right)\left(g^{k j}-\eta^{k} \eta^{j}\right)-(N-1) \tau=\phi^{k j} \eta_{a} \nabla_{k} \nabla_{j} v^{a} .
$$

Using of the Ricci formula, we have

$$
(N-1) \tau=2\left(\nabla^{a} v_{a}-\eta^{c} \eta^{b} \nabla_{c} v_{b}\right)
$$

From (1.25), we have

$$
\begin{equation*}
\tau=\frac{2}{N+1} \nabla_{a} v^{a} . \tag{3.16}
\end{equation*}
$$

(VI). From (3.15), we have by assumption

$$
v^{a} \nabla_{a} \nabla_{k} \eta_{j}+\nabla_{a} \eta_{j} \nabla_{k} v^{a}+\nabla_{k} \eta_{a} \nabla_{j} v^{a}-\eta_{j} \nabla_{k} \tau-\tau \nabla_{k} \eta_{j}=0,
$$

and from (1.10) and (1.11), we have

$$
\begin{equation*}
\eta_{k} v_{j}-\eta_{j} v_{k}+\phi_{a j} \nabla_{k} v^{a}+\phi_{k a} \nabla_{j} v^{a}-\eta_{j} \nabla_{k} \tau-\tau \phi_{k j}=0 . \tag{3.17}
\end{equation*}
$$

Transvecting this with $\phi^{k j}$, we have

$$
(N-1) \tau=2\left(\nabla_{a} v^{a}-\eta^{c} \eta^{b} \nabla_{c} v_{b}\right) .
$$

From (1.25), we obtain

$$
\tau=\frac{2}{N+1} \nabla_{a} v^{a} .
$$

And transvecting (3.17) with $g^{k j}$, we have

$$
\eta^{a} \nabla_{a} \tau=0 .
$$

and thus, the associated scalar τ is constant along the curve tangented to direction η^{i}.
Further, if v^{i} admits an infinitesimal strict contact transformation, then we have

$$
\begin{equation*}
\nabla_{a} v^{a}=0 . \tag{3.18}
\end{equation*}
$$

Next, if v^{i} admits an infinitesimal isometry, v^{i} admits an infinitesimal affine collineation and v^{i} is strict in consequence of (I). Then we obtain (3.18).
(VII). From (3.15) and (1.11), we have by the assumption

$$
\begin{align*}
& \eta_{k} v_{j}-\eta_{j} v_{k}+\phi_{a j} \nabla_{k} v^{a}+\phi_{k a} \nabla_{j} v^{a}-\eta_{j} \nabla_{k} \tau-\tau \phi_{k j} \tag{3.19}\\
& \quad=-\rho_{k} \eta_{j}-\rho_{j} \eta_{k} .
\end{align*}
$$

Transvecting this with $\phi^{k j}$, we have from (1.25)

$$
(N-1) \tau=2\left(\nabla_{a} v^{a}-\tau\right),
$$

or

$$
\tau=\frac{2}{N+1} \nabla_{a} v^{a}
$$

And transvecting (3.19) with $\eta^{k} \eta^{j}$, we obtain

$$
\begin{equation*}
\eta^{a}\left(\tau_{a}-2 \rho_{a}\right)=0 \tag{3.20}
\end{equation*}
$$

and thus, a direction $\tau_{k}-2 \rho_{k}$ is orthogonal to the direction η^{i}.
Next, if the transformation is strict, then it holds

$$
\begin{equation*}
\rho_{a} \eta^{a}=0, \tag{3.21}
\end{equation*}
$$

and (3.19) is reduced into

$$
\eta_{k} v_{j}-\eta_{j} v_{k}+\phi_{a j} \nabla_{k} v^{a}+\phi_{k a} \nabla_{j} v^{a}=-\rho_{k} \eta_{j}-\rho_{j} \eta_{k} .
$$

Interchainging for k and j and summing up these, we have

$$
\rho_{k} \eta_{j}+\rho_{j} \eta_{k}=0
$$

Transvecting this with η^{k}, we have by virtue of (3.21)

$$
\rho_{j}=0,
$$

and hence, the transformation admits an infinitesimal affine collineation.
(\mathbb{X}). From (3.15) and (1.11), we have by the assumption

$$
\begin{align*}
& \eta_{k} v_{j}-\eta_{j} v_{k}+\phi_{a j} \nabla_{k} v^{a}+\phi_{k a} \nabla_{j} v^{a}-\eta_{j} \nabla_{k} \tau-\tau \phi_{k j} \tag{3.22}\\
& \quad=-\sigma_{k} \eta_{j}-\sigma_{j} \eta_{k}+\eta_{a} \sigma^{a} g_{k j} .
\end{align*}
$$

Transvecting this with $\phi^{k j}$, we have

$$
2\left(\nabla_{a} v^{a}-\eta^{c} \eta^{b} \nabla_{c} v_{b}\right)=(N-1) \tau .
$$

From (1.25), it is reduced into
(3.23) $\quad(N+1) \tau=2 \nabla_{a} v^{a}$.

On the other hand, since v^{i} admits a conformal Killing, it holds

$$
\nabla_{k} v_{j}+\nabla_{j} v_{k}=2 \sigma g_{j k} .
$$

Transvecting this by $\eta^{k} \eta^{j}$ and $g^{k j}$ we have from (1.25) respectively
(3.24) $\tau=\sigma$,
and

$$
\begin{equation*}
\nabla_{a} v^{a}=N \sigma . \tag{3.25}
\end{equation*}
$$

From (3.23), (3.24) and (3.25), we have

$$
(N+1) \tau=2 N \sigma=2 N \tau
$$

or

$$
\tau=0 \quad \text { and } \quad \sigma=0
$$

and thus, we have proved (X).

February, 1963

Department of Mathematics,
Kyungpook Uuiversity, Taegu

REFERENCES

[1] S. Sasaki; On differentiable manifolds with certain structure which are closely related to almost contact structure I, Tohoku Math. Journ., 12 (1960) 459-476.
[2] S. Sasaki and Y. Hatakeyama; On differentiable manifolds with certian structure which are closely related to almost contact structure \mathbb{H}, Tohoku Math. Journ., 13 (1961), 281-294.
[3] M. Okumura; Some remarks on space with a certain contact structure, Tohoku Math. Journ., 14 (1962) 135-145.
[4] M. Okumura; On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. Journ., 14 (1962) 398-412.
[5] S. Tano; Note on infinitesimal transformations over contact manifolds, Tohoku Math. Journ., 14 (1962) 416-430.
[6] K. Yano; The theory of Lie derivatives and its applications, Amsterdam, 1957.

