
ON THE COMPLETENESS OF UNIFORM SPACES 

By Y oungshik Chang 

~ 1. Introduction 

Kelley ’s conjecture* on the completeness of uniform spaces is as follows: 

a uniform space satisfying the first axiom of countabi1ity would be complete if 

ev하y Cauchy sequencein the space converg어 to a point of the space. 

The main purpose of this note is to prove that his conjecture is false. 

1n ~ 3 we shall construct a unifonn space satisfying the first axiom of countability 
in which every Cauchy sequence converges to a point but some Cauchy net does 

not coverge. Such a space eγidently is not c:omplete. 

1 owe tnanks to professor Chi Y oung Kim who has suggested many improve-

ments for this note. 

~ 2 Definitions and theorems. 

As a preparation to the following section we. shall describe some definitions and 

theorenis which can be found in [1]. 

Let D be a directed set with the binary relation 르 • 
• 

DEFINITION 1. A net (Xn I n f D) is eventually in a set A iff there is an element 

m f D such that, if n f-Ð and n 르 m, then Xn f A. 

DEFINITION 2. A net (xn I n f D) in the uniform space (X, V) is a Cauchy net 

iff the net {(xm• Xn ) I (m, n) f DXD} is eventually in each member of the unifOl lllity 

v. (It is underst∞d that DXD is given the product ordering.) 

DEFINITION 3. A unifolIn space is complete iff every Cauchy net in the space 
converges to a point of the space. 

THEOREM 1. A fam i1y .JI of subsets of XXX is a base for some uniformity for 

X if and oo1y if 

(a) each member of 었 contains the diagonal ð.: 

(b) if Uf었， then U- 1 contains a member of .JI: 

• cf. J. L. Kelley ‘ Gweral Topolo양" (1955) page 193 
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(c) if Uf랬， then VO V c U for some V in .<Ø"; and 

(d) the intersection of two members of $ contains a member. 

THEOREM 2. If $ is a base for the uniformity V for X , then for each X f X 

the family of sets V [x] for V in 2! is a base for the neighborhood system of x. 

~ 3 Lemmas and main theorem. 

Now in this section it will be shown that the Kelley’s conjecture is false. 

Let X be any uncountable set. For each sequence 5 = (Xi I z' f ω} in Xwe make 

a subset Us öf XXX such that 

낀=(X-:{x‘})× (X - :{x‘})U(F (Xi , x‘)) 

LEMMA 1. Tke sμbset Us 01 XXX has the loll()/ûng þroþertz'es. 

(1) Us conta쩌s the diagona! ..6.. 

(2) Us=Us-t. 

(3) Uso Us=Us• 

PROOF. . (1) and (2) are clear. 

、

‘ 

For every member (x ,y) f UsoUs there exists 

(x,y) = (x, z) o(z,y) f U soU s. 

some point z in X such that 

(i) If x or y is a member of the sequence S, then x=z=y and therefore (x, ý) 

belongs- to U s 

(ii) If both x and y are not members of the sequence 5, then the (x, y) clearly 

belongs to U s 

It follows from Ci) and (ii) that UsoUs is contained in Us. 

While UsoUs 그 Us。4 = Us, therefore Us。Us= Us- This estabushes (3). 

For every sequence 5' in X we may construct a subset Us' of XXX as before. 

LEMMA 2. The lamz'!y 2!= {Us15 is a seqμence in X} is a base lor some 
μnzformz'ty V 01 x. 

PROOF. By Lemma 1 the following conditions (1), (2) and (3) are clearl7 
satisfied in ‘ 'iJ. 

(1) Each member of $ contains the diagonal ..6.. 

(2) For each Us in $, Us= Us-I. 

(3) For each Us in .9J, UsoUs= Us. 



On the Comþleteness' o.n Uni/orm Sþace 49 

Fpr arbitrary t #0 members Us' and Us" of !J1 there are two sequences S' = {XI' , 
xν， …, x/, ---} and S// = {Xl”, X2//, ---, xz//, ---} in X. 

Let S= {x/, Xl//, X2/, X2//,…x/, xz ”,…). Then since S is a sequencein X therè 

is a memcer Ut! in !i!. It is clear that Usη Us,, =Us. Hence Usη Us" is á member 

of !i!. We now haγe the following result. 

(4). The intersection of t￦o members of !i! is again a member of .Óß. 

(1), (2) , (3) and (4) are the sufficient conditions for the family $3' to be a 

base for some uniformity '2t! of X (by Theorem 1). 

Then we have: 

LEMMA 3. (X, '2t!) is a unzform space μlith the discrete unzform topology. 

PROOF For an arbitrary point x of X there exists a sequence S' = {x/ / i ε ω } 

in X such that X = X;' for each i f ω. Sinca Us' is a inember of the base $3', 

Us'[X] = (x) is a neighborohod of x (by Theorem 2). Hence Lemma 3 follo￦s. 

LEMMA 4.‘ A seqμence S={xi/if ω} iη (X , '2t!) is a Cauchy seqμence zf and only 

i/ there is α kf ω such that Xm=Xn /or eνery m, n르k. 

PROOF LetS={xi/i f ω} be a sequence in (X, '2/'). If there is not k f ω satisfying 

the given condition, then for every j f ω there exist m, η ε 띠 such that m, n르j and 

Xm "'" Xn. Since Xm and Xη are the members of the sequence S, (xm. x) does not 

belong to the U s. 

Therefore SXS= ((깐'Xj)/(i， j) f ω×ω} is not eγentually in Us. Hence the sequence 

S is not a Cauchy sequénce in (X, '2t!). This estabIishes half of Lemma 4, and 

the converse is obvious. 

LEMMA 5. Every Cauchy sequence iη (X, '2t!) converges to one po쩌t 01 the space. 

PROOF. It is clear by Lemma 4. 

Then we have the following main theorem. 

MAIN THEOREM. For the zμuform space (X, '2/') μIhich is cO"llstructed as above, 

(a) the /irst axiom 0/ countαbiUty is satis/ied, 
(b) eveγy Cauchy sequence ùz (X,2't!) cO"tZveγges to O"tZe φoint 0/ the space, 

and (c) there is some Cauchy net iχ (X， Zι) which does 1Z0t converge to a point 

0/ the space. 
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PROOF. (a) and (b) are obvious by the Lemmas 3 and 5. Let Xs=X - {Xj! X; f S } 

where S = (Xj! if ω) is a sequence in X. Then the family α = (X s ! U sf $6') is clearly 

directed by c, and every member X s in α is a non-empty subset of the set X 

because the set X is uncountable. For each X s in α we may choose a point y s 

in X s• Then the net {(Ys"Ys)! (Xs/' X s) f α×α) is eventually in each member of 

the base $6' for the uniformity '2/, be~ause for each member Us in $6' there is a 

member X s in α such that (Ys"'Ys') f Us whenever X s'" X s' follow X s in the 

ordering C •. Since the net {(ys"ys)!(Xs"Xs)f α × α) is eventually in each membeI 

of the base for the uniformi ty '2/, the net (y s ! X s f α) is a Cauênynet in (X, '2/) 

(by Definition 2). 

lt is enough to prove that the Cauchy net (ys! X s ε α) does not converge to a 

point of the space. For an arbitrary member X s in α there is a point Ys in X s 
which is a member of the Cauchy net. 

Let Xs,=Xs-Ys. Then X s' is a member of α and follows X s. Therefore there 

is a point Ys' in X s' which is a member of the Cauchy net, and Ys' 노ys. This 

shows that for every point X of X , the Cauchy net is not eventually in (x). 

Since (X, '2/) is a discrete space by Lemma 3 the Cauchy net can not converge 

to a point of the space. (c) follows. 
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