ON THE COMPLETENESS OF UNIFORM SPACES
By Youngshik Chang

§ 1, Introduction

Kelley’s conjecture* on the completeness of uniform spaces is as follows:
a uniform space satisfying the first axiom of countability would be complete if

every Cauchy sequence in the space converged to a point of the space,

The main purpose of this note is to prove that his conjecture is false,
In § 3 we shall construct a uniform space satisfying the first axiom of countability
in which every Cauchy sequence converges to a point but some Cauchy net does

not coverge, Such a space evidently is not complete,
I owe tnanks to professor Chi Young Kim who has suggested many improve-
ments for this note,

§ 2 Definitions and theorems,

As a preparation to the following section we shall describe some definitions and
theorems which can be found in [1],

Let D be a directed set with the binary relation =,

DEFINITION 1, A net {x,|n¢€ D} is eventually in a set A iff there is an element

me D such that, if #eD and # =m, then x,€ A,
DEFINITION 2, A net {x |ze D} in the uniform space (X, %) is ziCauchy net
iff the net {(x,,.%,)|(m,n) € DXD} is eventually in each member of the uniformity

2/, (1t 1s understood that DX D is given the product ordering, )

DEFINITION 3, A uniform space is complete iff every Cauchy net in the space
converges to a point of the space,

THEOREM 1, A family % of subsets of XXX is a base for some uniformity for
X if and only if

(a) each member of % contains the diagonal A;
(b) if Ue#Z, then U-! contains a member of %

% cf, J.L, Kelley “General Topology” (1955) page 193
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(¢) if Ue#, then VoV c U for some V in .%; and
(d) the intersection of two members of % contains a member.

THEOREM 2, If % is a base for the uniformifjr 7/ for X, then for eachxe X
the family of sets V[x] for V in & is a base for the neighborhpod system of «x,

§ 3 Lemmas and main theorem,

Now in this section it will be shown that the Kelley’s conjecture is false,
Let X be any uncountable set, For each sequence S= {x;|i € w} in X we maké.

a subset U, of XXX such that

U= (X-0 DX X = VEDUE G 7))

s
LEMMA 1, The subset U, of XXX has the following properties,
(1) U, contains the diagonal A, |
(2) U;=U;™, | .
@) Uy U,=U,,
PROOF, - (1) and (2) are clear, | ‘
For every member (x,¥) € U U, there exists some point z in X such that

(x,)=(x,2)o(z,3) e UsU,,

(i) If x or ¥ 1s a member of thé sequence S, then r=2z y and therefore (x,9)

belongs. to U |

(ii) If both x and y are not members of the sequence S, then the (x,y) cleariy
belongs to U, | | |

It follows from (i) and (ii) that U,eU, is contained in U,

While U,sU;dU;eA = U, therefore U,eU,= U, This establishes (3),

For every sequence S’ in X we may construct a subset Uy, of X XX as before,

LEMMA 2, The family &= {U S is a sequence in X} is a base for some
untformity % of X,

PROOF, By Lemma 1 the following conditions (1), (2) am—i_ (3) are clearly
satisfied in %,

(1) Each member of % contains the diagonal A,
(2) ForeachU,in %, U,=U"',

(3) For cach U, in &, U,-U,=U.,
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For arbitrary \ wo members U, and U . of % there are two sequences S"= {x/’,
X2, 00, %7, o) and S”={x,", 22", -, 2,7, -} In X,

Let S={x", x”, 22", x2",--x;7,%;7,+-}., Then since S is a sequence in X there
isa memker U, in %, It isclear that Uyn Uy, =U,, Hence Uyn U, is a. member

of #. We now have the following result,
(4). The intersection of two members of % is again a member of %,

(1), (2), (3) and (4) are the sufficient conditions for the family - % to be a
base for some uniformity 2 of X (by Theorem 1),

Then we have:

LEMMA 3, (X,%) ts a uniform space with the discrete uniform topology. -

PROOF For an arbitrary point x of X there exists a sequence S'={x;]| i€ @ ]
in X such that x=x;” for each 7€ w, Since U, is a member of the base %,

U.l[x] ={x} is 2 neighborohod of x (by Theorem 2), Hence Lemma 3 follows,

LEMMA 4. A sequence S={x;|i e w} in (X,%) is a Cauchy sequence if and only

if there is a ke w such that X, =X, Jor every m,n=EFk,

PROOF Let S={x;|7 ¢ w} be a sequence in (X, %), If there is not % € w satisfying
the given condition, then for every 7 € w there exist m, 7z € w such that m,#=j and
x,, %, Since x, and x, are the members of the sequence S, (x,,¥ ) does not
belong to the U,

Therefore SXS= {(x;,x,)|(z, 7)) € wXw} is not eventually in U, Hence the sequence
S is not a Cauchy sequénce in (X,% ), This establishes half of Lemma 4, and

the converse is obvious,

LEMMA 5, FEvery Cauchy-sequmce in (X, 22) converges to one point of the space,
PROOF. It is clear by Lemma 4,

Then we have the following main theorem,

MAIN THEOREM, For the uaiform space (X,27) which is coustructed as above,
(a) the first axiom of countability is satisfied,
(b) every Cauchy sequence in (X,2/) converges to ome point of the space,
and (c) there is some Cauchy net in (X,2/) wkich does not converge to a poz’kt
of the space,
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- PROOF, (a) aind (b) are obvious by the Lemmas 3 and 5, Let X.=X—{x;| x,¢ S}
where S={x.|/ € w} is a sequence in X, Then the family o= {X(|U ¢ %} isclearly
directed by C, and every member X, in ¢# is a non-empty subset of the set X
because the set X is uncountable, For each X, in &z we may choose a point y,
in X, Then the net {(¥,,.¥)|(X,,X,) € Xz} is eventually in each member of
the base # for the uniformity 2/, because for each member U, in % there is a
member X in ¢ such that (y..,yy) €U, whenever X_.,6 X follow X, in the
ordering C, Since the net {(yy,¥,) (X, X)eox X} is eventually in each member
of the base for the uniformity 2/, the net {y.|X;e ¢z} is a Cauthy net in (X, )

(by Definition 2),
It is enough to prove that the Cauchy net {y,|X ez} does not converge to a

pomnt of the space, For an arbitrary member X, in ¢z there is a pomnt y, in X,
which is a member of the Cauchy net,

Let X, =X.—~y,. Then X, is a member of oz and follows X, Therefore there
is a pont y- In X, which 1s a member of the Cauchy net, and y. =y, This

shows that for every point x of X, the Cauchy net is not eventually in {x},

Since (X,%7) is a discrete space by Lemma 3 the Cauchy net can not converge
to a point of the space, (c) follows,
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