Mappings Generating Upper-semicontinuous Decompositions of Spaces with Coherent Topologies

Sehie Park

1. Introduction

In this paper we generalize the concepts of compactly generated spaces (or Hausdorff k-spaces) and reflexive compact mappings. Using these concepts we obtain sufficient conditions for mappings to generate upper-semicontinuous (u.s.c.) decompositions of certain types of spaces with coherent topologies. We also show that some of the results generalize similar situations which are given previously.

2. Terminologies

A k-space X is a topological space having a topology coherent with the collection of its closed compact subsets; i.e., if a subset A of X intersects each closed compact set in a closed set, then A is closed [4]. A Hausdorff k-space is said to be compactly generated [6]. A topological space X is said to be locally paracompact if every point of X has a closed neighborhood which is a paracompact subspace of X [2]. Throughout this paper X and Y will represent topological spaces and f will be a mapping (continuous function) of X into Y. A mapping f of X into Y is said to be reflexive compact provided that $f^{-1}(C)$ is compact for every compact subset C of X [3]. All terminologies given above will be generalized in Sections 3 and 4. A mapping f of X into Y is said to generate an u.s.c. decomposition of X if for every open set U of X, the union V of point inverses $f^{-1}(y)$ contained in U is an open subset of X.

3. P-generated spaces

Throughout this paper, a topological property P is said to be admissible if it is inherited by closed sets.

3.1. Definition. Let X be a space and P an admissible property. A P-set in X is a closed subset of X which possesses the property P. X is said to be P-generated if it has a topology coherent with the collection of its P-sets; i.e., if a subset A of X intersects each P-set in a closed set, then A is closed.

3.2. Definition. Let P and Q be admissible properties. We shall write $P \subset Q$ if and only if every P-set is a Q-set.

Received by the editors September 1, 1968.
For instance, let P and Q be the compactness and the paracompactness, respectively. Then $P \subset Q$ in a Hausdorff space.

3.3. **Definition.** A neighborhood which is a P-set will be called *P-neighborhood*. A space X is said to be *locally P* provided that every point of X has a P-neighborhood.

It is obvious that if $P \subset Q$ and X is locally P, then X is locally Q.

3.4. **Proposition.** A locally P-space is P-generated.

Proof. Let B be a non-closed subset of X and suppose x is an accumulation point of B which does not belong to B. Since X is locally P there is a P-neighborhood U of x and the intersection $B \cap U$ is not closed because x is an accumulation point but not a member of $B \cap V$.

3.5. **Corollary.** A locally compact Hausdorff space is compactly generated [4].

3.6. **Proposition.** If a space X is P-generated and $P \subset Q$, then X is Q-generated.

Proof. Let B be a non-closed subset of X. If X is P-generated there is a P-set V of X such that $V \cap B$ is not closed. Since $P \subset Q$, V is also Q-set.

We can define an analogue to compactly generated spaces.

3.7. **Definition.** A *paracompactly generated space* is a Hausdorff space having a topology coherent with the collection of its closed paracompact subsets.

From Propositions 3.4 and 3.6 we obtain

3.8. **Corollary.** A Hausdorff space which is either locally paracompact or compactly generated is paracompactly generated.

It is established that a Hausdorff space which satisfies one of the following conditions is compactly generated.

(a) locally compact [4]

(b) the first axiom of countability [4]

(c) product of a compactly generated space and a locally compact Hausdorff space [1, 6]

Hence, from the latter part of Corollary 3.8, we obtain

3.9. **Corollary.** A Hausdorff space which satisfies one of the conditions (a), (b) and (c) is paracompactly generated.

In summary we have

$$
\text{compact} \implies \text{locally compact} \implies \text{compactly generated} \\
\implies \text{paracompact} \implies \text{locally paracompact} \implies \text{paracompactly generated} \\
\implies \text{normal} \implies \text{completely regular} \implies \text{Hausdorff}
$$
in the class of Hausdorff spaces and we know none of the arrows can be reversed.

Especially, the following example in [1] which shows the product of two compactly generated spaces need not be a compactly generated space serves as a paracompactly generated space which is not compactly generated.

3.10. Example. Let \(X \) be the dual space of an infinite dimensional Fréchet space with the compact-open topology is compactly generated space which is not locally compact. \(F = C(X, [0, 1]) \) with the compact-open topology is metrizable. However \(X \times F \) is not compactly generated. It follows from [5, Prop.4] that \(X \times F \) is paracompact which implies it is paracompactly generated.

4. Reflexive \(P \)-mappings

4.1. Definition. Let \(f \) be a mapping of \(X \) into \(Y \). \(f \) is called a reflexive \(P \)-mapping provided that \(f^{-1}(P) \) is a \(P \)-set for every \(P \)-set \(P \) of \(X \).

With the above definition we obtain a sufficient condition for mappings to generate u.s.c. decompositions of \(P \)-generated spaces.

4.2. Theorem. Let \(X \) be a \(P \)-generated space and \(f \) a mapping of \(X \) into \(Y \). If \(f \) is a reflexive \(P \)-mapping then \(f \) generates an upper-semicontinuous decomposition of \(X \).

This is a generalization of [3, Theorem 1] and the following proof is a slight modification of that in [3].

Proof. Let \(U \) be an open set in \(X \) containing a point inverse and \(V \) the union of the point inverses contained in \(U \). We show that \(U - V \) is closed in \(X \) which in turn implies \(V \) is open in \(X \) and consequently \(f \) generates an u.s.c. decomposition. Let \(P \) be a \(P \)-set in \(X \) such that \(H = (U - V) \cap P \neq \emptyset \). For each point \(x \) in \(H \), \(f^{-1}(x) \cap (X - U) \neq \emptyset \). Thus we obtain

\[
f^{-1}(P) \cap (X - U) = f^{-1}(P \cap U) \cap (X - U).
\]

The right member is a \(P \)-set so is the left member. Denoting the set in (1) above by \(M \) we obtain

\[
f^{-1}(M) \cap U = f^{-1}(P \cap U) \cap (U - V).
\]

The left member is a \(P \)-set so is the right member. The set \(P \cap (U - V) \) is closed for it is the intersection of the \(P \)-sets \(P \) and \(f^{-1}(P \cap U) \cap (U - V) \). Thus \(X \) being \(P \)-generated implies \(U - V \) is a closed subset of \(X \).

Since the closedness is admissible and every closed mapping is reflexive closed, we obtain

4.3. Corollary. Let \(f \) be a mapping of \(X \) into \(Y \). If \(f \) is closed then \(f \) generates an upper-semicontinuous decomposition of \(X \).
It is well-known the converse of Corollary 4.3 also holds.

4.4. Corollary. Let X be a compactly generated space and f a mapping of X into Y. If f is reflexive compact, then f generates an upper-semicontinuous decomposition of X [3. Theorem 1].

4.5. Corollary. Let X be a paracompactly generated space and f a mapping of X into Y. If f is reflexive paracompact, then f generates an upper-semicontinuous decomposition of X.

Combining Corollary 3.8 with Corollary 4.5 we obtain the following corollaries.

4.6. Corollary. Let X be a compactly generated space and f a mapping of X into Y. If f is reflexive paracompact, then f generates an upper-semicontinuous decomposition of X.

4.7. Corollary. Let X be a locally paracompact Hausdorff space and f a mapping of X into Y. If f is reflexive paracompact, then f generates an upper-semicontinuous decomposition of X.

References

Seoul National University