On Semi-simplicity and Weak Semi-simplicity

JAE MYUNG CHUNG

It is well known that the radical $J(A)$ of a ring A is the intersection of the modular maximal right ideals of A and a ring A is semi-simple if and only if $J(A) = (0)$. The purpose of this note is to prove that a semi-simple ring is weakly semi-simple and that if A is a commutative ring, then (0) is almost maximal if and only if A is an integral domain. The notation and terminology of this note are based on [1].

Definition 1. If I is a proper right ideal of a ring A then I is almost maximal provided that

1. if J_1 and J_2 are right ideals of A and $J_1 \cap J_2 = I$, then $J_1 = I$ or $J_2 = I$, i.e., I is meet-irreducible,
2. if $a \in A$ and $[I:a] \supset I$, then $a \in I$,
3. if J is a right ideal of A, $J \supset I$, then $N(I) \cap J \supset I$, where $N(I) = \{a \in A : aI \subseteq I\}$, and if $a \in A$ such that $[J:a] \supset I$ then $[J:a] \supset I$.

Theorem 1. If A is a commutative ring, then (0) is an almost maximal ideal if and only if A is an integral domain.

Proof. Let b be a nonzero element of A and $ab = 0$ for some $a \in A$. Then $[(0):a] \supset b$, i.e., $[(0):a] \supset (0)$. Since (0) is almost maximal, $a \in (0)$, i.e., $a = 0$. Hence A is an integral domain. Conversely, if J_1 and J_2 are right ideals of A, $J_1 \supset (0)$ and $J_2 \supset (0)$, then there exist nonzero elements a in J_1 and b in J_2 such that $ab \neq 0$, since A is an integral domain, and $ab \in J_1 \cap J_2$, i.e., $J_1 \cap J_2 \supset (0)$. Now suppose $a \in A$ and $[(0):a] \supset (0)$, then there exists a nonzero element b in A such that $ab = 0$. Since A is an integral domain, $a = 0$, i.e., $a \in (0)$. Again assume $J \supset (0)$. Since $N((0)) = A$, $J \cap N((0)) = J \supset (0)$. And if $a \in A$, then $[J:a] \supset J \supset (0)$. Therefore (0) is almost maximal.

The proofs of Theorem 2 and Corollary depend upon the following lemmas proved in [1].

Lemma 1. Let $W(A)$ be the weak radical of a ring A. If $W(A) \neq A$, then $W(A)$ is the intersection of almost maximal right ideals of A.

Lemma 2. If A is a ring and B is a two-sided ideal of A, then $W(B) = W(A) \cap B$.

Definition 2. A ring is called weakly semi-simple if and only if its weak radical is zero ideal.

Received by the editors September 25, 1968.
THEOREM 2. If a ring A is semi-simple, then A is weakly semi-simple.

Proof. We show that a modular maximal right ideal I of A is almost maximal, from which it follows that $W(A) \subseteq J(A)$ by Lemma 1, and the theorem will be proved. Assume J is a right ideal of A and $J \supseteq I$. Then $J = A$ since I is maximal. Therefore I is meet-irreducible in A. Now suppose $a \in A$ and $[I:a] \supseteq I$. Then $[I:a] = A$, i.e., $aA \subseteq I$. If $a \in I$, then $a + I$ is a generator of a strictly cyclic A-module $A - I$. For any b in A, there exists an element c in A such that $(a + I)c = b + I$. Then $b \in I$, since $ac - b \in I$ and $ac \in I$, which is impossible. Hence $a \not\in I$. Let e be a left identity modulo I. Then $I \subseteq N(I)$, $e \in N(I)$ and $e \in I$, i.e., $N(I) \supseteq I$. If $J \supseteq I$, then $J \cap N(I) = N(I) \supseteq I$. Assume $J \supseteq I$ and $e \in A$ such that $[J:a] \supseteq I$. Since $[J:a] = [A:a]$, $[J:a] \ni e$ and thus $[J:a] \supseteq I$. Thus the theorem is proved.

COROLLARY. Let A be a ring and B be an ideal of A such that A and B have the same radical. Then A and B have the same weak radical.

Proof. Since $J(A) = J(B) = J(A) \cap B$, $J(A) \subseteq B$ and thus $W(A) \subseteq B$. Therefore, by Lemma 2, $W(B) = W(A) \cap B = W(A)$.

Reference

Seoul National University