ON PRECORRECT UNIFORM SPACES

C. J. Mozzochi

A subset \(\mathcal{U} \) of the power set of \((X \times X)\) is a \textit{precorrect uniformity} on \(X\) iff \(\mathcal{U} \) satisfies (\(A_1\)) \(U \in \mathcal{U} \) iff \(U = U^{-1}, U \supseteq \Delta \), and \(U \) contains a member of \(\mathcal{U} : (A_2) \)

For every \(A \subseteq X \) and \(U, V \in \mathcal{U} \) there exists a \(W \in \mathcal{U} \) such that \(W \cdot A \subseteq U \cdot A \cap V \cdot A : (A_3) \)

(\(A_2\)) For every \(A \subseteq X \) and \(U \in \mathcal{U} \) there exists \(V, W \) in \(\mathcal{U} \) such that \((W \cup V) \cdot A \subseteq U \cdot A \).

A relation \(\delta \) on \(P(X) \), the power set of \(X\), is a \textit{proximity} on \(X\) iff \(\delta \) satisfies:

(\(P_1\)) \(A \delta B \implies B \delta A \); (\(P_2\)) \(C \delta (A \cup B) \) iff either \(\delta CA \) or \(C \delta B \); (\(P_3\)) \(\phi \delta A \) for every \(A \subseteq X \); (\(P_4\)) \(x \delta x \) for all \(x \in X \); (\(P_5\)) \(A \delta B \) implies the existence of \(C \) and \(D \) such that \(C \cap D = \phi \), and \(A \delta (X - D) \), \(B \delta (X - D) \)

THEOREM 1. Let \(\mathcal{U} \) be a subset of the power set of \((X \times X)\). Suppose for each \(U \in \mathcal{U} \) \(U = U^{-1} \). Define a relation \(\delta(\mathcal{U}) \) on \(P(X) \) by \(A \delta(\mathcal{U}) B \) iff \(U \cdot A \cap B = \phi \) for all \(U \in \mathcal{U} \). Then \(\delta(\mathcal{U}) \) satisfies (\(P_1\)), (\(P_2\)), (\(P_3\)), (\(P_4\)) and (\(P_5\)) iff \(\mathcal{U} \) satisfies (\(A_1^*\)): \(U \in \mathcal{U} \) implies \(U \supseteq \Delta, (A_2) \) and (\(A_3\)).

A proof of Theorem 1 is given in [1].

If we are given \(\delta \), a proximity on \(X\), then the class of precorrect uniformities \(\mathcal{U} \) on \(X\) such that \(\delta(\mathcal{U}) = \delta \) is called a \textit{proximity class of precorrect uniformities} on \(X\) and is denoted by \(II(\delta) \).

THEOREM 2. Let \((X, \delta)\) be a proximity space. Then \(II(\delta) \) contains one and only one totally bounded symmetric uniformity.

PROOF. This is an immediate consequence of Theorem 21.20 in [6].

THEOREM 3. Let \((X, \delta)\) be a proximity space. Then \(II(\delta) \) contains a maximum and a minimum.

PROOF. For all \(A, B \) in \(P(X) \) let \(U_{A, B} = (X \times X) - ((A \times B) \cup (B \times A)) \). It is easy to show by Theorem 1 that \(\mathcal{B} = \{ U_{A, B} | A \delta B \} \) is a base for a precorrect uniformity \(\mathcal{U}_1(\delta) \) on \(X\) such that \(\mathcal{U}_1(\delta) \) is the least element in \(II(\delta) \). Also, it is easily shown by Theorem 1 that the union of an arbitrary family of members of \(II(\delta) \) is a base for a precorrect uniformity on \(X\) that is a member of \(II(\delta) \); consequently \(II(\delta) \) has a maximum element.
THEOREM 4. If \(\delta \) is the usual proximity for the reals, \(X \), then \(II(\delta) \) contains at least two distinct precompact precorrect uniformities that have an open base.

PROOF. Let \(\gamma = \{ U_{A,B} | A \bar{B} \} \). Let \(\mathcal{B} = \{ \text{all finite intersections of members of } \gamma \} \).

It can be shown by Theorem 1 that \(\mathcal{B} \) is a base for a precompact symmetric uniformity \(\mathcal{U}_2(\delta) \) on \(X \) such that if \(\mathcal{U}_1(\delta) \) is the uniformity that was constructed in Theorem 3 then \(\mathcal{U}_1(\delta) \) is properly contained in \(\mathcal{U}_2(\delta) \). It is easily shown that both \(\mathcal{U}_1(\delta) \) and \(\mathcal{U}_2(\delta) \) are totally bounded and have an open base (cf. [5]).

We say that a filter in the precorrect uniform space \((X, \mathcal{U}) \) is weakly Cauchy iff for every \(U \in \mathcal{U} \) there exists an \(x \in X \) such that \(U[x] \in \mathcal{F} \). Also, \((X, \mathcal{U}) \) is complete iff every weakly Cauchy filter on \((X, \mathcal{U}) \) has a cluster point in \(X \).

THEOREM 5. If \((X, \mathcal{T}) \) is a connected completely regular topological space, then there exists a precompact precorrect uniformity \(\mathcal{U} \) on \(X \) with an open base such that \(\mathcal{T}(\mathcal{U}) = \mathcal{T} \) and every filter is weakly Cauchy.

PROOF. Let \(\bar{\delta} \) be a proximity on \(X \) such that \(\mathcal{T}(\bar{\delta}) = \mathcal{T} \). Let \(\mathcal{U}_1(\bar{\delta}) \) be an element of \(II(\bar{\delta}) \). Note that \(\mathcal{U}_1(\bar{\delta}) \) exists by Theorem 3. Let \(U \in \mathcal{U}_1(\bar{\delta}) \).

Then there exist sets \(A \subset X \) and \(B \subset X \) such that \(U \supset U_{A,B} \supset U_{\overline{A},B} \). But since \(\mathcal{T} \) is connected, there exists \(x_0 \in (X - (A \cup B)) \) so that \(U_{\overline{A},B}[x_0] = X \). Hence every filter on \(X \) is weakly Cauchy with respect to \(\mathcal{U} \).

THEOREM 6. A precorrect space is compact iff it is complete and precompact.

PROOF. This is an immediate consequence of Theorem 4 in [4] and the easily established fact namely that every precorrect uniform space is a symmetric generalized uniform space (cf. [1]).

THEOREM 7. A completely regular topological space is compact iff it is complete with respect to every compatible precorrect uniformity on \(X \).

PROOF. This is an immediate consequence of the Lemma on page 5 in [3] and Theorem 6 above.
REFERENCES

