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On the Two-Dimensional Hydrodynamic Pressure
on the Hull Surface of the Chine-Type
Ship in Vertical Vibration

by
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Abstracts

To grasp the characteristics of hydredynamic pressure distribution on the hull
surface of the chine-type ship in vertical vibration of high frequency the hydrodyn-
amic pressure on the surface of two-dimensional cylinders of the curvilinear-element
section with chines is investigated in comparison with those of the rectangular secticn,
of the circular section, of the elliptical section, of the triangular section, and of the
Lewis form of hypotrocoidal character. The results on the chire-type show markabiy
different characteristics in the pressure distribution from the otkers.

Introduction

In the previous paper [1.**, employing a two-parameter technique besed on the conformal trarsfcrmation,

the author investigated two-dimersional added mass fer beth vertical and horizontal wihraticn of the

chine-type ship.

In this paper, since the fluctuating hydrodynamic pressure on the hull surface of the chine-type ship in

vibration might be an another problem of interest, the general nature of hydrodynamic pressure distribuiion

along the section profile of two-dimensional chine-type cylinders vertically oscillating at high {requency in

a free surface of an ideal fluid is investigated in comparision with those of the rectangular sectior, of the

circular section, of the elliptical section, of the triangular section, and of the Lewis form of hyp trocoidal

character.
Formulation of the problem

Hydrodynamic pressure
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In the cases of that the profile of a ship section in z-plane can be mapped from a unit circle in {-plane

by the Biberbach’s transformation

2(O=RE+ Sapal ) €y
where

z=x+iy @

{=&4ip=elotit) =¢if fora=0 (3

R: a positive scale factor,
the volocity potential ¢ satisfying the boundary conditions presented for two-dimensional cylinders of the ship

section vertically oscillating at high frequency in a free surface of an ideal fluid can be turned out to be
(#azo="Ro((1+ar)sin 0+ Flap.-isin(2n-—1)8} e} )

at the body boundary [1], where v denotes velocity amplitude, and a and 4 are curvilinear ccordinates
which designate the free surface with 6=0 & = and the section profile with =0 in the z-plane.
By virtue of the general Bernoulli’s equation, since we are interested in oscillation of high frequency and

small amplitude, the hydrodynamic pressure p’ at the body boundary may be obtained from

[ /395
r= \ ot )a=0 ®

where p is the mass density of the fluid [2]. Now we are to obtain the pressure distribution in the form of

a non-dimensionalized coefficient defined by

’

- e B AN .
Co= p(acceleration) (half breadth of ship section) (6)

Then we have

—{(1~|-a1)smﬁ+ azr_lsm(Zn 1)6l
Co= i e P )

a1+ .3:—_1,'(1271-1)
Section profile
(a) Chine-type section
As described in the previous paper (1], employing the transformation
2()=REC+al +aa.t™™); m=7 or 11 (®
together with the conditions of constraints on a; and an given below in terms of = and the half beam-draft

ratis p of the section profille;

0<am<%, when p=1

1,

()<am\1 wem ey when p>1 i
(p 1)(m+1)Tm )}
0<am<- | S , when p<1
%—(P———lym-l‘l)-i-m
_/p—1"
e A a0

we can obtain section profiles classified as a series of the single chine-type section for m=7, and a series of

the double chine-type section for m=11. The above conditions of constraints on 4; and a», are derived from
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the requirements that the section profile in z-plane should be of (a) chine character, (b) not intersecting
itself, and (c) not including singular points,

(b) Lewis form of hypotrocoidal character, Circular section and Elliptical section,

Assigning m=3in Eqs. (8), (9) and (10), we can obtain the Lewis form of hypotrocoidal character. And
the circular sections and the elliptical sections are obtainable from the transformation (8) with a;=a,=0,
and a»=0 respectively.

(c) Relation between hull form coefficients and the coefficients of the transformation for (a) and (b)

For the section profile defined by the transformation (8), the half beam-draft ratio p and the sectional

area coeficient & are turned out to be

_ l+aitanm
P 1 atan av
and
o= z (1,“,2,1?—7,"“2”'2 (12)

4 A+aitam)(I—ajtam)
Hence, for a pair of given p and ¢, we are able to obtain the coefficients of the transformation (8) from Eq.(10)

and
amn= 'lH*lm}t (—x+ Vmnt—(m—Dnx ) (13
where
SRS s
k=(n 40)<7P+1 ) 440 (14)

(d) Rectangular section and Triangular Section

Referring to Prof. Watanabe’s work [3], we can obtain rectangular sections of

cos -+ 2::;42:;_1COS(271~ 13

= o (15)
sin f— ;;azn-lsin(Zn”l)ﬂ
by assigning the coefficients
ay=cos 28, az= ~—%—sin22ﬁ, as=~— *1710* cos 28 sin?2g, )
= ,,1 - 200 __ n2 :'
a 56 (5c0s?28—1)sin?28, . (16)

ag=— —712-— (7cos?28—3)cos 28 sin?23,

to the transformation (1). In Egs. (15) and (16) 3 denotes the angle between the free surface and the
unit radius vector pointing the point on the circumference of the unit circle in {-plane corresponding to the
first corner of the rectangle below the free surface in z-plane.
And we can also obtain triangnlar sections of
p:tan(-%q:;‘) 17
by assigning the coefficients

~

a=—(1-2), @=L (-1, as= ~115— U=-Pa-292

i
a7=-21—1—(1-—r) Q-r+M2r, I as

:71777 —_ — 2__ 9.3
%=—e A= @E—7r+372—-27%, |
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to the transformation (1) [3].

Numerical results

Since the purpose of this work is to investigate the general nature of hydrodynamic pressure distribution
along the section profile, the calculations, as shown in Table 1, are done only for
(a) p=1.00 and 2.00,
(b) inner extreme cases; @m={@m)max, and outer extreme cases; an=0 (circle or ellipse), based on the
transformation (8), and
(c) rectangular sections and triangular sections.
The results of C, calculation are graphically given in Fig. 1 together with the corresponding section profiles

which are so controlled to have half-beam of unity with the scale factor R.

Table 1
Section Profile ! P J a \[ a, Jf as t as ] a; | ag l an ‘("112&—71) CFqi(:l; iln
Circle | rodo7ssd o | 0 1 0 0 o o] ol c
Ellipse \ 2.000. 7854 0.33333 0 1 0 0 0 0 0! E
Lewis form of | 1.000.2945 0 | 0.33333 0 0 0 0 0o | L1
Bypotrocoida | 2.00{‘(_)_.4417:‘ 0.39999| 0. 1253391 o | o 0 0 0 | L-2
Single : 1.00{0. 5154 0 0 0 |0.14285 0 0 0 | SC-1
chine-type | 2.000.6014 0.36363 0 0 |0.09090 0 0 0 | Sc-2
Double 1.000.6000 © | 0 o | 0 o loogso o | DC-1
chine-type ~ 2.000.6600 0.35294 0 0 0 0 0.05882 0 | DC-2
Rectangle 1.001.0 0 |-o016667 0 loowss o  — E ~ | R-1
2.001.0 | 0.30902 —0.15075 —0.02795 0.00844| 0.00905 — | — | R-2
Triangle | 1.00‘0.5 0 | oaese7 o ool o | — | — | Ta
| 2.000.5 | 0.40968 0.13869 —0.01136 0.01569 —0.00353' — | =1 T2

Discussion and concluding remarks

From Fig. 1 we can observe that the pressure coefficient increases very rapidly near the chine and the free
surface, and that the effects of the slope of the section profile on the slope of Cp-contour are of an inverse each
other for the concaved section and for the convexed section; as the slope of the section profile approaches
to be paraliel to the direction of the motion, the increment of the slope of Cp-contour becomes smaller in
cases of the former, but bigger in cases of the latter.

As for the location where the pressure normal to the section profile becomes maximum, the following
relations are analytically derived for the section obtainable from the transformation (8);

(@) (Cp)max at §=x/2 (along the bottom center line), if

; m=3 : m=1 : m=11
> 2.5 | 50/8 61/6
am< p/(4p+5) 1 »/(24p+25) 2/(60p+61)

(b) If the conditions on p and a are otherwise than the above, (Cp)max does not act along the bottom
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(For the code, refer to Table 1)
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Fig. 1 Hydrodynamic pressure distribution

center line; at the point corresponding to #=sin~! —L}—+——112«~ AT e G the case of m=3 for instance.
as
The Cp-contour of the triangle sections will be helpful for the investigation of the effect of the slope of
of the section profile on the added mass or hydrocdynamic force. It will be clear that for the usual round
sections the (Cplmax acts along the bottom center line. Obtaining the vertical component of the pressure, we
can construct an another contour which represents the athwartship distribution of the added mass for vertical

vibration.
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Errata
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“Added Mass for both Vertical and Horizontal Vibration of Two-Dimensional Cylinders of Curvilinear-
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