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Abstract

Determination of a two-point boundary value problem is the key of finding
the control function %(f) with the application of the fundamental idea of
Minimum principle. The late development shows the discovery of the initial
costate vector for the solution of a two-point value problem. As a new technique

of determining the optimal control function, Newton's sequential method is ex-

amined in this paper.

2

g (Ee 3£A)AE AEALE A4 Al uld)
AR AL Aol avTHrt 2ue HIde 24t FAE
costate vector & ol Fa|E s A3t o8l stAl sdyoe)

Q_F

F2ede 28 A
T e 27
Auks . glel

QA A E AT T A2-E W9 st 24 Newton’s Sequential ¥}
98 Al 2elm YARSE Folal BAY +AL AAE Amst

o gre o] wge] Feldel oejel THAQ A4

A
oy

Computer o] £]s14 <

7t SEEAE A Tezd Bl Aolnh

Introduction

As the methods of determining optimal control
function %4 (t), the method of functional analysis
by Krosovski, Minimum principle by Pontryagin,
and Dynamic programming by Bellman have been
well introduced as typical ones. The application
of Minimum principle focuses on the two-point
boundary value problem. This solution of bound-

ary value problem is to be the point of determi-
g4

‘ning the optimal function but:Minimum‘principle"

necessary condition for determining the optimal

]
L

function.

v

79

The lack of the sufficient condition was indic-
ated by Kelly?, Gottlieb?, Denn?, Kurihari?, and
Durbeck. They furthered the method, in detail, for
finding optimal control and presented how to min-
imize a sample Hamiltonian at each iteration.
Newton's method which the author is going to
introduce was widely studied by McReynolds &
Bryson®, Plant®, Knudson (see ?, 10, 4v a2 a3
av a8 However the sequential operation method
was not discussed in their papers.

In this paper, the new sequential operation me-
thod applied to Newton's method is designed for
determining optimal control function #(f). Of co-

urse, the application of sequential operation me-
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thod to Newton's method is based on accelerat-
ing the convergence to the value desired. The
given minimization problem, this is put into
integral equation and reduced to a vector relation,
in its development.

The vector relation is replaced by a sequence
of approximate vector operator. A method is de-
signed for choosing the sequence so that Newton's
method can be applied to it and approached as
closely as desired to the true solution. Under a
suitable assumption, the main part of this method
is proved by the use of the convergence theory
by Kantorovich ®.

Finally, the aim of this paper is to develop a
new computational method and to consider its
application to fuel minimization of the regulator

system and another similar problems.
1, Design of the computational methed

The fixed time fuel optimal control of a linear
plant to a given state is examined. One of the
mathematical development of the computational
method for a problem is shown. The problem is
presented, reduced to a two-point boundary value
problem, changed to integral form, replaced by a
sequence of approximate integral equations, and
made ready for the numerical solution by the
application of Newton's method.

A) Problem
Given; a. A system described by the linear time
invariant (vector) differential equation
X&) =Azx () +bu(t) 1,1
where
1. Then vector &(£) is the state.
2. The system matrix A is an »X7 constant
matrix.
3. The gain matrix b is an nX7 constant
matrix.
4. The r vector u(¢) is the control.
b. A fixed time interval
te(0, T 1,2)

c. Initial and terminal boundary conditions on

the state vector

X(0)=¢
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X(TH=0 1,3)
d. The control variable must satisfy a constraint
[u () =<1 for all t «CO,T] 1,4)
e. The fuel functional is
T
Jw={ o d. @5

Then, it is desired to find a control variable u*(t)
that

a. Satisfles the constraint (1, 4)

b. Transfers the system (1,1) from the initial
state € at time £=0 to the terminal state @
at time t=T,

¢. Minimizes the fuel function (1,5).

B) The two-point boundary value problem

The relations deduced by applying Pontryagin’s
minimum principle to the problem are summar-
ized below;

Definition; The “deadzone” function dez [-] is
defined as follows;

u(t) =dez{w ()] 1,6)

means #(f)=1 when w@E) >1
u{t)=0 when l[w@)| <L
% (f)=-1 when w{) <~1

The input-output characteristic of the deadzone
function is shown in Fig 1.

Let u*(t), te (O,T) be the fuel optimal control,
the solution of problem, assuming that one exists.
Let X*(f) be the resulting state on the fuel opt-
imal trajectory. Let P*() ¢[0,T] be the corresp-
onding costate vector.

Then the minimum principle yields the relations

H(X*, u*, P*f)=ju*(t)|+P*(t)Ax* (f) +P*

@b @) w7
i =28 = axe ) +our ) .8)
Pt )= i=—aPrt) 1.9
X*(0)=¢

where A’ is the transpose of A
and the relation
H(X*, u*, P* §) <H(X* u, P*) for all u such
that [u|<<1 yield u*({f)=—dez(d’ p*{@)] ({,11)
from above Egs. (1,8)-(1,11). Determination of
=*, the optimal costate initial condition vector,
will be considered equivalent to solution of the
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TPBVP (Two point boundary value problem).
C) Integral equaton form

First write the solution of Eq. (1,9)
P*(t)=e**t z* where z*=P*(0)
Defiine for convenience
gihy=e b
Then the optimal control (1,11) becomes
w* () =—dez(Pe 4 z*)=—dez(g’ (£)=*) (1, 13)
The solution for the state Eq. (1, 8) is

Xy =ev e+ o) wr i

1,12

If the terminal boundary condition (1,3) is
applied, then

AT 0=5—qu(t) dex(q (t) =*2dt

For later use with Newton's method, the oper-

ator T(z) is defined as;

T(z) =E—e-AT 0_52 q(®) dequ’(t)x]dt(L ”

The opterator T(z) maps one n-dimensional
vector into another
T(z); R—R,
The problem is now reduced to finding =¥, the
solution vector of the operator equation
T(z*)=0 (1,15)
For simplicity, z* will be refered to as the sol-
ution of the operator T'(z), also, in most of

what follows the final state is the origin, so

T(z)=E—SZ a(t) dex(q (&)m)dt @, 16)

D) Sequence of approximate equations

A sequence of approximate operator {7, ()} is
now introduced to replace the operator T'(z). The
idea is to start with a very simple operator and
work up by step toward the exact operator 7T (z).
By doing this properly, Newton’s method can be
guaranteed to converge at each step, so that a
workable computational approach results. Two
approximations will be introduced; one is a linear
term to get the computations started successfully,
and the other is a sequence of smooth functions
() with a parameter 5, (k=0,---,k;,) as 500, Uy(+)
->u*(+) so the idea is to start with a linear app-
roximation (p,=0), then to drive the linear part

to zero and increase 7, so that the approximate

control %, (.) converges to the optimal control u*{.)
when the optimal control u*(y’(¢)=z*) is replaced
by % the form of the optimal control argument
g’ (t)x will be retained.

Now a linear one for the simplest useful control
will be started.

Change 1; First apply a linear control using the
control argument ¢ (£)z yields

% (¢’ () =) =aug’ (O)=

Inserting this control into the differential Eq. (1,
1) and applying the given boundary condition

leads to the zeroth approximate operator
To() =6= @ e W=t
Let W(T) be the the controllability matrix
W ={ awyq @t

Then, To(z)=E—aoW(T)= 1,17

For approximation of the optimal control func-
tion, the exponential form #%,(.) can be brought in
by a scalar approximation factor 7. The deadzone
function can also be approximated as closely as
desired by an analytic function, since the points
of discontinuity are excluded.

Change 2; Introduce an approximate control
function #,(.), using the control argument ¢ (¥)=z

yields
w (@ (§)7) = tank (@ A x+1)I+tanhn

(g @®)=—12}. 1,18)

A plot of u, () as a function of ¢'(¢)= is shown

in Fig. 1 for some typical values of 7. As 7, in-

creases U,(t) approaches the deadzone function
u*(t).

The general approximate operator uses both of

the above changes.
T
Ty@=g=a ¥ (De—{ g®u (@ 1=)d8(1,19)

Let the sequence of approximate operator have
k, steps
0 <oy Lpaeeeees <o
g > e Sap >aptl>e=an=0
Where K,<K.

In Fig. 3 the sum of the two changes is shown

(1, 20)

for a typical sequence of approximate operator.

Definition 2; Applied sequentially means the solu-
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dez{t) ergence soon includes the exact solution vector

o z* as shown in Fig. 4.

As the results
- [ 60 \ 14

2 t A;;,,:(?) " (1.21)
o ‘ N1 =%+ A7 1,22)

i — gl
day= arﬂE—G'AT gl [1 (1+77k) (1, 23)
@ 1=MaZ {0, ay+day} 1,24

Fio) The Deadzonz Function Dez :
i A vector g, is defined as below,

0=\ Oty @28

AU led

ez i3ITY

E) Applying Newton’s method

Newton’s method is to be applied to a typical
operator T, (z). Given the operator Eq. (1,19) to
find the solution vector z; such that

Tp(m) =0
One linearizes about the current guess
Filz) =Ty (29 + (mp—2) T, (%)
Then the next iteration is found by solving

Fig2 The Approximate Comrgl  Function U,

tion vector x;_; of the previous operator Ty_;(z)

i i for } ? .o .
is used as a starting vector for Newton’s method this linear equation for

att=mt=~ (T ® (231 Ty () 1,27
Equation (1,27) is the recursive relation of

on the present aperator T,(z).

Properties of the sequence are briefly listed here

according to the analytical result.

1. A sequence can be found such that Newton’s
method converges when applied to each me-
mber sequentially.

2. Under suitable restrictions this sequence of
operator converges to the exact operator 7'
(7).

3. The solutions to the approximate operators

lead to sub-optimal control which use only Fig3 Typical
a little more fuel that the optimal control,

yet do not require the instantaneous switch- 1
ing of the optimal control.

Definition 3 ; Assume the solution vector =, of
the operator T'(z) has been found. Now make
changes 4y and A in parameters y and « to
form a new operator Ty.i. Apply Newton’s me-
thod to T.; sequentially (by Def.2) The set of
all changess 4y and da such that Newton’s me-
thod converges is called the region of converg-

ence about 7, and e, in the parameter space.

There is a corresponding region of convergence

in the space = of solution vectors. Fig. 4 gives

. . Fig 4. Region f Conve ce f Py T
some idea of the results. The region of conv- e qlons o nvergence for the Sequence (T}
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Newton’s method. Since T, has vector valued
range space, its first derivative is the Jacobian

‘matrix.
T,0 () == WD —{ a®)g Hu® (g @)zt

Then Eq. (1,27) can be written out entirely in

matrix notation
witl=ri WD)+ aBeEu® [ O=dt
E—aW(Dr={ aOute ©=)d]
From Eqg. (1,18), the first derivative of the
approximate control function 4, is
W (@ D=L 72— tehin(@ O+

—tanh?(y, (g ($)=z—1)7} (1,29
Starting with an initial guess z° Eq. (1,28) is

(1, 28)

applied repeatedly, if at same step, i, #'=z'"1 the
inner loop is said to have converged, and the
vector z' is defined to be the solution vector =z,
of the operator T

F) Condition for convergence

The sufficient condition for convergence of Ne-
wton’s method was given by Kantorovich ®. This
sufficient condition is cited in appendix A as the

theorem 1.

2. Theoretical Analysis

In this section, the key points are only pres-
ented, omitting the detailed development about
the method. The suggested method converges to
the optimal control which is proved by theorems
1 and 2.

Theorm 1 ;

Given; The operator (1,14) and (1,19)

Assumptions 1) The system matrix of (1,1) is

nonsingular ie. det A0 ,1)
2) Let the condition
lg @) =*|=1 2,2)

be satisfied at times t=ft,, {5+, {,, in the open
interval (0,T). The switch times are assumed
to be distinct and this will be true if the pro-
blem is nonsingular. 3) The necessary and suffi-
cient condition for the uniqueness of z* given
w4*(t), is that the set of vectors g(f), i=1,2, -, m

span the space R, that is, the matrix @ must

have maximal rank (rank n), where

a=[seato~qt | @3

Then; for any ¢>0 there exists a number y(¢)

such that for all
7> 7(e)

and a,=0]|T'(x*) =T, (=*) || <e

Proof; Assumptions (2,1) and (2,3) guarantee
that the problem is normal and that the arg-
ument of the control ¢’ (£)z* does not remain
constant for any finite time interval (for a
proof of this, see Athems and Falb®)
Let condition |g (#)z*|=1 occur m times at

times

where t; ¢(O,T]
Since ¢’ (f)z* is a continuous function which is
never constant, each of the times #; must be
seperated firm its neighbors by some finite amount.
Now proceed by removing a small time interval
from [0,7'] around each of these m points. Let
t;- and ;. be the end points of the ith such in-
terval and let B denote the interval. Let B denote
the set of all such intervals
B={t;te(iny, tisd, t=1, 2, 0000 ,m}

The end points ;. are to be chosen such that
1@ G| —1=%1/ 7

Subject to the condition
Bc(0,T)

For small values of 3 two or more of the int-
ervals may overlap. As y increases the continuity
of ¢'(f)=* guarantees that all the intervals will
be seperate for some finite value of 7.

The point is that by subdividing the tme in-
terval [O,T] the difference between the exact and
approximate operator at z* can be bounded

T~ Tu (%) =—{ a(t) (deztq B=)—wly
(t)z*3} dt
Fig. 5 shows that the difference between the dez
(] and %, (t) function for a given 7, increases
as the -+1 points are approached. So outside the
set B the errors increase toward the times s,

and are largest where |¢ (@)z*|=+1/v/ 7 Inside
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the set B it is accurate enough to bound the diff-
erence by (1,0)
Splitting the integral in operator x taking the

norm and simplifying yield

T~ = la@1de+{  lawids

0,7

[1—%tcm @r—v/7) ——%tath?]
NI T 1< ladt+{ 1e@
1di1—tanks/ 7

Or by regrouping terms
N T~ T 1] | C—tanky/ 73 +{ 101
dt tankh /7|1
Note; C=11{ lg(®)dti| constant

Since lim tanh /7y =1

ye

And lim B=§] t; (i.e. of measure zero)
=1

Th:n both terms of Eq. xx can be made as
small as desired by increasing 7.

It seems to be reasonable that if T (z) 0 is
close to T'(x) as in theorem 1, =, is close to =*
as in theorem 2.

Theorem 2,
Given; 1) The operator equation (1,14) and (1,
19) of problem
2) Assumption (2,1), (2,2), and (2,3)
Then; for any ¢ >0 there exists a number 7%(e)
such that whenever
7e>7(€)
then
Hat—z,] | <ea

3. Conclusion

The original minimization problem for a regul-
ator, (The fuel optimal control such as for reac-
tor, internal combustion engines, chemical process,
and boiler) was converted to a two-point bound-
ary value problem. This was put into integral
form and reduced to a nonlinear vector relation
(or operator): i.e., the problem can be solved once
the initial costate vector z* is found. The vector
relation was replaced by a sequence of approxim-
ate vector operator. A method was designed for
choosing the sequence so that Newton's method

J. Korean Nuclear Society Vol. 1, No. 2, Dec. 1969

could pe applied to it and approached as closely
as desired to the true solution.

The procedure consists of applying Newton's.
method sequentially to the sequence of approx-
imate operator to determine their solution wvector
{m:}. These vectors lead to a sequence of approx-
imate control which converges to the optimal con-
trol.

Theorems 1 and 2 are theoretically shown under
a suitable assumption that convergence of this
method is going to approach the true solution.

Finally for the digital computer application to
various engineering problems, further study will

have to be followed.

et

Control Uk

Fig5 Partition of Approximate
for Thecrem 1

Appendix A;
Theorem 1 ; Suppose that,

1) The second derivative operator P2 [y)
exists and is continuous on the set Y;.

2) The first derivative inverse operator [
exists

3) HIPWA) | 1=8o

4) |IToP® (y) |1<8 For all yeY

5) h=pBo=1/2

6) Y13STO(?I°)

where ro=»————1 —“21 —2h

Then 1) There is a solution Y*&S,,(¥) such
that P(Y*)=0
2) This solution is unique in the set

YinSa () where 7-1:&%&
3) Newton's method converges to the sol-

ution Y*,
4) The rate of convergence is characterized
by inequality

[y*—y'] ls*(zﬁli)—y
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