Iterative Solutions of the Dirichlet Problem
for $\Delta u = bu^{2n}$

Sung Ki Kim

1. Introduction. We construct the solution of

$$\Delta u = bu^{2n} \tag{1}$$

in a given region, the value of u on the boundary of the region being known. The given boundary values of u and the constant b are non-negative. The existence of the solution is demonstrated by the convergence of the iterative methods discussed.

The notation and terminology of this paper are based on [1]. Under the same conditions of [1], we can easily show that the solution u is unique by an appeal to the maximum principle and its corollary in [1]. Three iterative methods belonging to the class of linear iterative methods

$$\Delta u_{i+1} = bu_{i}^{n}(cu_{i}^{n} + (1-c)u_{i+1}^{n})$$

are investigated.

2. Newton's Methods. The problem of this paper is to determine the nonnegative solution u of the integral equation

$$u(s) + b\int G(s, t)u^{2n}(t)dt - h(s) = 0 \tag{2}$$

which is equivalent to (1). Identifying $P(u)$ with the left-hand side of (2), one has

$$P'(u)v(s) = v(s) + 2nb\int G(s, t)u^{2n-1}v(t)dt,$$

and

$$P''(u)vw(s) = 2n(2n-1)b\int G(s, t)u^{2n-2}v(t)w(t)dt.$$
From (2), we have
\[P(u_0) = b \int G(s, t) u^{2n}(t) \, dt. \]
Since the maximum value of \(h \) is unity, the maximum of \(f \),
\[P(u_0) \leq b \int G(s, t) \, dt \leq bG \] [1].

From the definition of the Fréchet derivative,
\[P'(u_0)u = u(s) + 2nb \int G(s, t) h^{2n-1}(t) u(t) \, dt. \]

Using the bound of the Green's function [1],
\[\max 2nb \int G(s, t) h^{2n-1}(t) u(t) \, dt \leq 2nbG_1 \max u(s). \]

If \(2nbG_1 < 1 \), the inverse of the operator \(P'(u) \) exists and its norm is no greater than
\[B = 1/(1 - 2nbG_1) \] [3].

We obtain the following inequality
\[\| [P'(u_0)]^{-1} P(u_0) \| \leq \| [P'(u_0)]^{-1} \| \cdot \| P(u_0) \| \leq B \cdot bG_1 = \eta. \]

A bound for \(P''(u) \) with \(u \) in a certain neighborhood of \(u_0 \) is needed. However, \(P''(u) \) has the general bound
\[K = 2n(2n-1)bG_1. \]

Finally, we need
\[\frac{1}{2} \geq BK \eta = \frac{2n(2n-1)bG_1^2}{(1 - 2nbG_1)^2}. \] (3)

If \(b \) is sufficiently small, this inequality will be satisfied. Thus for the present problem the Kantorovich Theorem [1] asserts that if \(b \) is so small that inequality (3) is satisfied, then the sequence \(u_i \) of solutions to
\[u_0(s) = h(s) \]
\[u_{i+1}(s) + 2nb \int G(s, t) u_i^{2n-1}(t) u_{i+1}(t) \, dt \]
= \(h(s) + (2n-1)b \int G(s, t) u_i^{2n}(t) \, dt \) \((i=0, 1, 2, \ldots \) converges to the solution \(u \) of (2), that solution being unique.

3. The Natural iteration. The successive iterates \(u_i \) are solutions of
\[u_0 = h \]
\[\Delta u_{i+1} = bu_i^{2n} \quad \text{in } R \]
Iterative Solutions of the Dirichlet Problem for $\Delta u = bu^{2n}$

\[u_i = f \quad \text{on } S(i = 0, 1, 2, \ldots) \]

or equivalently

\[u_{i+1}(s) = h(s) - b \int G(s, t) u_i^{2n}(t) dt. \]

h is positive in R \[{1}\]. Since $\int G(s, t) u_0^{2n}(t) dt$ is positive and zero on S, for small enough b, $u_1(s)$ will also be nonnegative in $R: 0 \leq u_1$.

The solution u is no greater than h. For $\Delta (u - h) = bu^{2n} \geq 0$, so that, by the maximum principle, $u - h \leq 0$.

If b is so small that $0 \leq u_1$, then

\[0 \leq u_1 \leq u_2 \leq \ldots \leq u_{i+1} \leq \ldots \leq u_i \leq \ldots \leq u_1 \leq u_0 \]

by further application of the maximum principle.

The convergence of the sequence u_i is established as follows:

\[|u_{i+1} - u_i| = b |\int G(s, t) [u_i^{2n} - u_{i-1}^{2n}] (t) dt| \]

\[= b |\int G(s, t) (u_i^n + u_{i-1}^n)(u_i^n - u_{i-1}^n)(t) dt| \]

\[\leq b \max |u_i^n - u_{i-1}^n| \cdot |\int G(s, t) (u_i^n + u_{i-1}^n) dt| \]

\[\leq 2b \max |u_i^n - u_{i-1}^n| \cdot |\int G dt| \]

\[\leq 2bG_1 \max |u_i^n - u_{i-1}^n| \]

\[\leq 2bG_1 \max |u_i^{n+1} - u_i - u_{i-1} + \ldots + u_{i-1}^{n-1} + u_i^{n-1}| \cdot |u_i - u_i^{n-1}| \]

\[\leq 2nbG_1 \max |u_i^n - u_i - u_{i-1}^n|. \]

If $2nbG_1 < 1$, the sequence converges absolutely and uniformly.

4. The iteration for arbitrary positive values of b. For this method the sequence of functions u_i is taken to be:

\[u_0 = h \]

\[\Delta u_{i+1} = bu_i^{2n} \quad \text{in } R \]

\[u_i = f \quad \text{on } S \quad (i = 0, 1, 2, \ldots) \]

or equivalently

\[u_{i+1}(s) = h(s) - b \int G(s, t) u_i^n(t) u_{i+1}^n(t) dt. \] \[(4) \]

For this sequence one may assert that the u_i are positive in R except
perhaps for a set of measure zero on which \(u_i'' = 0 \) (i.e., \(u_i = 0 \)) [1].

To demonstrate the convergence of the iteration, it is shown below that
\[\| v_{i+1} \| \leq r \| v_i \| \quad (0 < r < 1), \]
where \(v_i = u_{i+1}'' - u_i'' \).

Thus
\[\| v_{i+1} \| \leq r^{i+1} \| v_0 \|. \]

Here the norm is that of real \(L_a \)-space:
\[\| p \| = \left(\int p^2(t) \, dt \right)^{1/2}. \]

\[\lim_{i \to \infty} u_i'' = u \]
exists as the sum of the convergent in the series
\[u_0 + \sum_{i=1}^{\infty} v_i. \]

From (4),
\[u_{i+2} - u_{i+1} = -b \int G(s, t) [u_{i+1}'' u_{i+2}''(t) - u_i'' u_{i+1}''(t)] \, dt \]
\[= -b \int G(s, t) u_{i+1}''(v_{i+1} + v_i)(t) \, dt. \]

Therefore
\[v_{i+1} = -b [u_i'' + \ldots + u_i''] \int G(s, t) u_{i+1}''(v_{i+1} + v_i)(t) \, dt \quad (5). \]

Let \(\{ \varphi_j \} \) be the set of normalized characteristic solutions and the numbers \(\lambda_j \), the corresponding characteristic values of
\[\int G(s, t) u_{i+1}''(t) \varphi_j(t) \, dt = \lambda_j \varphi_j(s). \]

The existence and completeness of the \(\varphi_j \) and \(\lambda_j \) under certain continuity conditions on \(u_i'' \) (i.e., \(u_{i+1}'' \)) is demonstrated in [2].

The corresponding differential equation for \(\varphi_j \) is
\[\lambda_j \varphi_j = -u_{i+1}'' \varphi_j \text{ in } R \]
\[\varphi_j = 0 \text{ on } S. \]

Here we have
\[\lambda_j \int \varphi_j \dot{\varphi}_j \, dt = -\int u_{i+1}'' \varphi_j^2 \, dt. \]

By Green's theorem
\[-\lambda_j \int \varphi_j^2 \, dt = -\int u_{i+1}'' \varphi_j^2 \, dt. \]
Iterative Solutions of the Dirichlet Problem for $\Delta u = bu^2$

so that, $\lambda_j \geq 0$.

A bound on the λ_j is obtained from the integral form:

$$\lambda_j |\varphi_j(s)| = |\int G(s, t)u_{i+1}^*(t)\varphi_j(t)dt|$$

$$\leq \max |\varphi_j| \cdot \max |u_{i+1}^*| \cdot \max |\int G(s, t)dt|$$

$$= G_1 \max |\varphi_j|.$$

It follows that $\lambda_j \leq G_1$.

By the completeness of the φ_j, there exist constants $a_{i,j}$ and $a_{i+1,j}$ for which

$$v_i = \sum_{j=1}^{\infty} a_{i,j} \varphi_j,$$

$$v_{i+1} = \sum_{j=1}^{\infty} a_{i+1,j} \varphi_j.$$

Inserting the series forms for v_i and v_{i+1} into (5) gives

$$\sum_{j=1}^{\infty} \{a_{i+1,j} [1 + b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1})] + a_{i,j} b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1}) \} \varphi_j = 0.$$

From the orthogonality of the φ_j,

$$a_{i+1,j} = -a_{i,j} b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1}) 1 + b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1})^{-1}.$$

Since $0 \leq \lambda_j \leq G_1$ and $u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1} \leq n$,

$$0 \leq \frac{b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1})}{1 + b \lambda_j (u_{i+2}^{* -1} + \cdots + u_{i+1}^{* -1})^{-1}} \leq \frac{nbG_1}{1 + nbG_1} = r < 1.$$

So that

$$|a_{i+1,j}| \leq r |a_{i,j}|.$$

By Parseval's theorem, we have

$$||v_{i+1}|| \leq r ||v_i||.$$

Here r is independent of i. Hence the sequence u_i converges in the mean. Therefore u_i converges in the mean, as was to be shown.

References

Seoul National University