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A common problem with which taste panels are faced is that of distinguishing bstwesn two similar
samples. The most widely usad experimental designs for the solution of this problem are pair tests, duo-trio
tests, triangle test, multiple comparison tests, and their various modification. All of the preceding tests have
in common the fact that a decision is based on the proportion  of correct judgments made by the panel
membhers. In comparing the relative merits of the various experimental designs, —apparently conflicting results
have been obtained. Byer and Abrams (2) conclude that pair tests are superior to triangle tests. Hower,
Harrison and Elder (5) call the triangle test “obviously more efficient” than the pair test. Gridgeman 4)
concludes that “-pair tests and triangle tests are normally about equally powerful and appreciably superior to
duo-triotests. “Hopkins and Giridge man (6) have shown that, in consideration of their respective powers, “tri-
angular tests have a statistical advantage over duo-trios and pairs.” In certain situations, experimental
evidence would seem to indicate a preference preference for multiple comparisons (11,12). The
purpose of this paper is to consider a modification in the analysis of the triangular test, rather than to ind-
icate the best experimental design (even if such were possible).

Althouzh other than statistical considerations are important in most experimental situations, the statistical
advantaze of triangular taste teste tests is of sufficient merit to warrant further investigation of this technique.
With this in mind, the authors have developed a statistical procedure for the evaluation of triangle test results
which improves the analysys of these results, using as a criterion of improvement the powers of the
conventional and modified test procedures. ’

Althoazh the emphasis is primarily on the statistical aspects of this technique, it is recognized that the usual
prodlems of codinz bias, panel selection, fatigue, and other personal factors exist and must be dealt with by
the experimenter.  For discussions of these problems, the reader may consult the cita tions (1,7,9,10,13)

contained in the reference list.

SOME THEORETICAI, ASPECTS

let us assume, for the purpose of this paper, that the primary concern rests in the ‘question: “Is there a
detectable difference between samplez A and B?” The intensity (3) of such a difference has been omitted from
consideration, not only to simplify the analysis of the test but also due to the fact that practical situations
exist for which the intensity is not a factor.

For example, a ceriain commodity, X contains 1% of an additive Y. It is desired to increase the percent
of Y witnout substantially changing the flavor of X. If the falvor difference is detectable, the percent of Y
will not be changed- However, if increasing the percent of Y to say 3% does not incur a  detectable
difference, the higher percent of Y may be used. In cases such as this, The intensity of The difference is of

no consequence. The question is: Does a difference exist (rezardless of dagree)?
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In a trianzle tasts test, wharein th2 pansl attempts to determia» which of 3 aliquatsis the“odd” or diffarant
aliquot, one would expect to pick the “odd” aliquot once in every 3 times on the averaze by merely
guessing. In the notation of Gridgeman (4), let us define the probability of correct discrimination as P; and
the probability of picking the “odd” aliquot by guessing as Py equals 1/3. Then the propartion of correct
judgments in the long run is, by the law of compound probability:

P=P;+Pe(1—Py) or P=(1+2P,)/3

Obviously, if there is no detectable difference in uhe samples, P, is O and P is 1/3. However, if there is
a readily detectable difference, Py will be greater than O and hence P will be greater thanl/3. This suggests
the null hypothesis that the probabilify of correct discrimination is zero, which is the common uull hypothesis
for sensory diffence tests. An alternative hypothesis that P, is greater than zero is then also suggested by th: fore
going. Of course, inpractice Py is seldom if ever specifiable @ priori. This poses no difficulty in the present si-
tuation, however, if we consider the alternative hypothesis specifying a set of values of P, {any P, greater than
zero) rather than some single value. Clearly, the null hypothesis implies no detectable difference whereas the alterna
tive hypothesis implies the opposite. Also, for the sake of simplicity, we shall assume equalety the Py for all judzed
of a Teavor for test js assumption, as well as for estimating P; the reader is referrcd to Hopkins and Gridge
man (6). (The authors are presently considering more general alternative hypothists wherein equality of P, for all
judges is not assumed. ), In terms of a statistical test procedure, the null and alternative hypotheses are specified by

Ho:Py=0Oor Hy:P=P;=1/3 )
Hi:PyOorH,: PyPs=1/3

respectively. The alternative hypothesis is then a composite hypothesis, i.e. it is consistent for more than
one value of P. For testing the above hypotheses, a one-tailed test should be used. In other words, the
critical region (that set of results which leads to the rejection of the null hypothesis and implies the
acceptance of the alternative hypothesis) consists of only large values of P(P)>1/3).

and

In any statistical test procedure, two main types of errors are to be considered. These two errors aretermad
thetype Iandtype I errors, where the type I error is the error made in rejecting H. when in fact it is true and
the type Ilerror is the error made in failing to reject the null hypothesis when in fact it is not true. The
above errors are commonly referred to as the producer’s risk and the consumer’s risk, respectively, since an
error of the firsttype usually results in rej2ctiny an acceptable item and an error of the second type usually
results in the consumer being exposed to a nonacceptable item. In taste testing, committing a type I error
results essentilly in a mistake by which the consumer is not adversely affected. However, committing a type
II error may result in adversz consumer reaction. Thus, it is desirable to keep the probability of both errors
small, but especially the probability of a type Il errer. Unfortunately, the type II ercor. is frequently
neglected in analyzing taste test results (14).

The probability of committing a type I error is denoted by a and the protability of committinz a type 1l
error is denoted by H. For a given test procedure, the critical ‘region is determined by specifying « The
optimum test situaticn is one in which, for a specified @, 5 is a minimum. However. for a fixed sample
size, « and { vary inversely. Therefore, choosing @==O would make 5 a maximum and conversely. In
experimental sisuations, lhiowever, an =0 is an impractical restriction; consequently, an & of .05 or .01 is
conventionally used (8). Minimizing [ is equivalent to maximizing 1-5, which is called the power of the
test. In a test situation where the alternative hypothesis is consistent for more than one value of P, the power
of the test varies with the particular value of P which is sclected. In this case, we obtain the power
function which gives the power of the test for the various valuss of P botween O and 1. Of courss, the
yalues of P which are of interest in the triangle test are P=1/3(H )and P> 1/3{11\). Values of P less
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than 1/3 are not maaningful in this situation. The power function then appzars to b> on2 reasonable criterion

for choosing between two test procedures.
Conventionally. the procedure for analysis of triangle test results uses the binomial expression:

n
1.1 P+ T 2.} ()5 —x
b EFE+Q x:»o(g) PQ

where x is the number of correct determinations out of a total of n determinations, P (the probability of

a correct determination) is specified by the null hypothesis and Q=1-P. For a specified a, the critical

region is determined by solving the expression:

n

n XY ~X
(1.2) X) PO~ a

X=X

for xo- In a given experiment, the null hypothesis is rejected whenever the number of successes is equal to

or greater than x,. Since the binomial is a discrete distribution (x assumes only integral values), (1.2) is

expressed as an inequality rather than an equality. Unfertunately, unless n is sufficientry large, the term on

the left side of (1.2) will vary from a by a great deal (see section’ on procedure). Although it may not be
obvious without a numerical example, this in turn increases 5 and hence becreases the power of the test.

As a partial selution to this problem, the authors propose the use of the multinomial rather than the
binomial distribution. Let us assume, for the sake of simplicity, that the experiment involves 3 replications
or trials by each judge. (It should be realized that small-sample designs involving other groupings of judges
and replications are notonly possible but of considerable interest. power considerations would be of importance
in these cases also, as a means of choosing appropriate designs. ‘However, the authors feel that consideration
of these cases would tend to make the present paper too lengthy for the purpose intended ) There are then 4
posible results. A judge may make 3,2,1, or O corret decisions. Let: '

%, be the number of judges making 3 correct decisions

X, be the number of judges making 2 correct decisions

X3 be the numbet of judges making 1 correct decision

%, be the number of judges making O correct decisions

and let:

II, be the probahility of a judge making 3 correct decisions
II; be the probability of a judge making 2 correct decisions
Il; be the probability of a judge making 1 correct decision

I1; be the probability of a judge makihg 0 correct decisions.

The II, values are then determined by the following considerations: The probability of a judge making 3,

2, 1, 0 correct decisons out of 3 possible correct decisions, when the probability of a correct decision under

the null hypothesis is 1/3, is given by the binomial expressions:
II, =probability (r,n) = ( ;1) PQrr

where r=3,2,1,0;n=3;P=1/3; and Q=1-P=2/3.
We then have:
11, =probability (3, 3):{3 (1/3) (2/3)° (2/3)'=1/27

I, =probability (2, 3) = G‘Z\’ (1/3)? =6/27

I, = probability (1,3) = /j) (1/3)1(2/3)?=12/27
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I0, == probability (0,3)= |01 (1/3)°(2/3)*=8/27
The null hypothesis could then be writien as:
H.:11,=1/27, 11,-:6/27, 1[,=12/27,11,--8/27
but this is exactly equivalent to writing:
H,:P=:1/3.
Hence the simpler form will be used along with IT,:P> 1/3. The mullinomial expression corresponding to
(1.1) is then: '

=K1
X X 1K 1X1 X,

where k is the number of judges on the pansl énd =x:=k. For a specified value of a, (1.3) may be

(1.3) (IL+IL+1L+I1L) k= IS I IO

summed over the values of x; which tend to discredit the null hypotesis  and such that the sum is less than

or epual to a. The relatively greater power of this method will be illustrated in the saction onprocedure.
PROCEDURE

For illustration, let us use 4 judges and 3 replications. There are then 12 possibilities of a correct dcterini-
nation. If no readily detectable difference exists between the samples, approximately 4 correct decisions (1/3
of 12) would be expected. The reader should realize, however, that the proportion of correct judgments will
be close to 1/3 only if the experiment is repeated a large number of times. In single experiments, the results
will vary about 1/3 by a chance amount when there is no readily detectable difference. The hypotheses are:

H,:P=1/3 and H,:P>1/3.

Let us select an a of. 05. This means that a certain set of resulit will be assumed to indicate a real
difference between samples whenever the chance of such results is less than 5 in 100 under the nullhypothesis.
Under these conditions we shall, of course, expect to be wrong 5 times out of 100 in the long run. The
two forms of analysis follow:

Binomial :

Here we have:

1.4 " N Xy n—-x,A]2 12\ X 2ex
a9 : oegeey (00 @

Then (1.2) becomes:

(1.5) ; (1)2() (1/3)(2/3) 12205
X = Xo
which is found to bz consistent for x,=8 by consulting the binomial tables(15). Therefore in this test, the
null hypotirxesis would be rejected whenever 8 or more correct  determinations were made. It should be pointed
out, however, that the left side of (1.5) isactually equal to. 019 for x,=8.
Multinomial :
The terms of the multinomial are given by:

(1-6) E iy (12D 612y (6/27) (827
These are arranged by ordering the number of succoees (0 —12)and the tererms  correspondin g to each  munber
of correct determinations. (Actually then, the first stage ordering of these terms is abinomial ordering and the
multinomial ordering is the second stage. However, sincethe improvement results from the multinomial break -down
and ordering, the whole procedure ittermed multinornial brezk down and ordering, the whole procedure is termed
mu]tinomia].) The roader will notice that for each number of corret determinations shere mav he s2veral multing -
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mial terms, Thos2 teﬁnas, eazh eocezsanading to the sanz ninbar of corcest dsterminations, are than ordered
by considaring the probability of thair ozzarcenc: wadse H, andHii e, th terms least  likely under
H, are placad nzarest the rejctivn rezioa In osdexinz th: maltinomial terms several possibilities exist,
but the method used herein is felt to bz the most practical since the probabilities of term sin the rejection
region consistently increase with increasing values of P. This illustrates the practical utility of the multinomial
in contrast to the bnomial. The binomil number of considers only the Corret determinatins, Wherease the

multinemial also considers the ways in which a given number of correct determinations could ofiginate-
For the case considered here, the inequality:
(1' 7) Z 4! x1 x2 x3 x4 <L
, KT KX (/2D (6/21) (12/27) (8/27) <05

is satisfied for 7 correct decisions or more providing that the 7 correct decisions are a result of

(1.8) X =2,%,=0,X;=1X,==1
x=1,%=2,%=0x,=1
and
Xi=0,%X,=3X,=1,X,=0
or

X, =LX,=1,X;=2,X,=0

A problem, unique (among the results included) to 12 possible correct decisions, is encountered in this
casz. Both of the last two results have the same probability of occurrence; but, if both are included in the
rejection region (1. 7) becomes approximately 066 and the inequality is not satisfied. Two possible solutions
are to include only one of the results and to include neither of the results. Including only one, (1.7) is
approximately . 047. Including neither, (1.7) is approximately 027. However, in both cases the resultant
power is greater than under the binomial. In the binomial case, the corresponding expression is approximately
.019. If one of these two results were obtained experimentally, an objective decision could be made based on
the combination of & and3 which was most advantageous to the experimenter. For example, the maximum a and
minmum S5 would be obtained if both results were included and the converse wduld be true if neither were
included. For the purposes of constructing the multinomial power function, one of the two results was included
in the rejection region.

Tables 1 and 2 give the results which lead to a rejection of the null hypothesis for an @ of 05 and 01,
respectively, when 1,2,3,4,5, or 6 judges and 3 replications are usad. For example, the results derived
above are listed in Table 1 under 4 juges. There we find that 8 to 12 correct decisions and additicnal results
listed in (1.8) lead toa rejection of the null hypothesis for an @ of . 05.

TABLE 1
. 05 Critical regions for multinomial triangular taste testsl through 6 judges:

3 replicates per judge

Number of
judges: 1 2 3 4 5 6
Critical 3 5-6 6-9 : 8-12 k 9-15 10-18
regiong : correct correct  correct correct and correct and correct and
X X X5 X Ko Xp Xy Xy KX X X
2 011 21 0 2 3 0 0 3
1201 20 21 130 2°
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and 04 01 211 2

03 1 o 203 1
or

11 2 9

TABLE 2

01 Critical regions for multinomial triangular taste tests—~1 through 6 judges;

3 replications per judge

Number of
judges: 1 2 3 4 5 ' 6
Critical 6 79 9-12 10415 12-18
regions: . correct correct and . correct and correct and correct and
XXX X XN XXX XXX X o XXX X
2 001 2101 3 0 0 2 31 0 2
202 0 2030 30 21
0 4 0.0 1 4 01
05 10
21 30
22 11

- No rejection poésible at. 01.
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Fig. 1
POWER OF THE

The power curves for the bircmial and nultincmial are given in Figure 1, for an a of .05 and for 4
and 6 judges. There, the power of the tests (1—£) is plotted against the various values of P. Since S
is the probability of not rejecting Hg, when in fact some value of P consistant with H, is true, 1-§
may be arrived at by summing, for the wvarious values of P, the probabilities of the results which
fall in thecritical region (See Tables 1 and 2). This has been done for values of P less than 1/3 also,
in order to complete the power function. As pointed out

interpretationt for the test in question. As evidenced

previously, however, these values of P have on
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by Figure 1, the power of the multionmial is consistently gteater than that of the binomial for the two cases
cited. (Similar results follow for an a of .01). For more than 6 judges and 3 replications, the two power
curves practically coincide. For these situations then, there is little advantage in using the multinomial rather
than the binomial from the point of view oof power, there is a sufficient number of small sample cases to

warrant the application of the results derived from consideration of the multinomial.
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