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Degenerate Cases of the FEinstein’s Connection
in the *g*-Unified Field Theory-11. The Tensor *U,,,

KyunGg TAeE Cuung aAND Kun Soo CHANG

1. Intreduction. This paper is a direct continuation of [3], in which we gave
the singular sclutions S.. of the Einstein’s equation for twe degenerate cases and the
necessary and sufficient conditions for the existence of at least one singular sclution
S.,. in the Einstein’s *g#-unified field thecry. The purpcse of the present paper is to
give the corresponding singular sclutions *U.., in holenomic and ron-helonomic form and
to derive the conditions for the existence of at least one singular solution *U,i. This
topic will be investigated for all possible indices of inertia.

2. Preliminary results. The notations and results employed in the present paper
are essentially those of [1] and [3], and we begin with a brief recapitulation of the main
results given there.

REMARK. All the considerations in the present paper are dealt for all possible indices
of inertia. Furthermore, we restrict our discussions to two degenerate cases among three
possible cases, namely the degenerate case of *D=0 of the first class (i.e., ¥K=1/3) and
that of the second class (i.e., *K=1/2).

AGREEMENT. In our subsequent considerations we shall use the following Roman
indices: 4, j, k=1, 2, 3, 4; a, b, c=1, 2; ¢, f, g=3, 4 The indices a, b, ¢, ¢, f, g
do not obey the usual summation convention.

A. In our *g*-unified field theory whose differential geometrical structure is based
on ([1], p.1323)

2. Da D jxgir—=—28, #¥gh,
the connection I'}, must be of the form
2.Db [’;;:*{;;‘} + S+ *¥ D,
where
def [10J0  [10l0
2.2)a *Uoau =82+ 28, ay.

Here *{»} are the Christoffel symbols defined by *hi, in the usual way. In each of the
following cases the tensor *U,;, are found to be:
(For the case *D=0 of the first class)

[10Jo 001 [
(2.2b A+*K)(B* K~ D* U= 5 K — D*Kap—*K*Koam+* Ko
(10)0
+CK—1*Koapm.
(For the second class)
[o1lo 100
(2.2)c A —4*KD* U+ *Kip—2* Ko ay)
r21lo Cozl1 fe1lz {21732 Qo2
= (Z*K_ 1>*K1yv+ *Klyv’i'z*K*Klyv"}" *Kl_uv—“z {z*K*Kv(lp)+
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B. For each of the degenerate cases we have ([3], p.146)
(For the case *D=0 of the first class)

. et i
(For the second class)
Q.0 *,Il:—*;l:i, *21:—*;1:0
(For the case *D—=0 of the first class and for the second class)
2.5 *Kerg= Ko =0, *Kru=*K a3, *Koer=*Koter>.
The non-holonomic components of the singular solutions S... of (2. 1)a are given by:

(For the case *D=0 of the first class)
a) S,s and S;,, are arbitrary when a+f is even;

b) Saff:% *Kaff: Sde:%*Kfaa When a+f is Odd,
C) Sabc: efg:(];

2.6 d)j S""f:%{*K““ +%C*D"” *Kfab}, Cab)

Suram S K pt 2 (DK ), o)

& Sp=s* Ky @FE); Sur=3*Kury (e#).
(For the second class)

a) Sy,, are arbitrary; b Sa,,f:_i_* F
2D O Sure=5*Kure' D Sup=4"Keps (ab);
e Sefa:%*Kefa; £ Sue=8.se=0.

3. Singular solutions *U,;. for the case *D=—0 of the first class. In this section
we restrict our considerations to the degenerate case *D=0 of the first class, namely
*K=1/3.

THEOREM (3.1). A mnecessary and sufficient condition that (2.2)a admits at least
one solution *U,i, is

l *OM *llu z *(10)0
3. Da 3 Kan+ Kv(lﬂ)—‘g’ Ka=0,
which is equivalent to its non-holonomic form
@3.Db *K foa=*K, ;1 r=0 when a+f is even.

Proof. Since ¥*K=1/3, the condition (3.1)a is evident from (2.2)b. Using the relation
W*p i=(* 2§, (3.1)a is reduced to its non-holonomic form

G2 IFK,(yr=0 where I=(FA+¥A+*1— 3% ¥4 )

x ¥y z

¢ Note that the result (7.3)b, obtained in [1], p.1323, is wrong. The correct solution is as
given in (2, 2)c above.
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We see that I is identically zero for all z,y,z except for the following two cases:
Case 1. z=f, y=a, 2=a; x=a, y=f, z=a; or x=a, y=a, z=f when at+f is
even, in which case, using (2.3) and (2.5), (3.2) is reduced to *K,,=0;
Case 2. z=a, y=f, z=f;, x=f, y=a, 2=f; or z=f, y=f, z=a when a+f is
even, in which case, using (2.5) and (2.3) again, (3.2) is reduced to *K,,,=0.
Hence (3.1)b follows.
ReMARK. Note that the condition (3. 1Db is identical to the existence condition for at
least one Si, (See [3], p.147). This fact is not surprising in view of (2.2)a.
THEOREM (3.2). When the conditions (3.1) are satisfied, the tensor *U,, has the
Jollowing non-holonomic components:
a) *¥U,,=*U,,,=*U;;;=0, (@%b, e£f);
b) *U,sy, *¥U,,;, *Uy,,, and *U;,; are arbitrary when a+f is even;
FU i =*Us, =0

3.3 © | TV =5*2 *K.,, when a+f is odd:

\ *Usy= %*/} *K far

N [*Ues= g MKy %K 2D, (£

\*Uf.,[,:-g’—c*g*Kf,,ﬁ*5*K,,U>, (a8).
Proof. In general the non-holonomic components of *U.,:, may be obtained from
(2. 2a as follows:
€X' FU o= S e A A4 S8,y A48, (FA=4D).
Hence (3.3) follows from (3.4), using (2.3), (2.5) and (2.6). For example,
U = (S s A D+ 8, CRAHD 48,0, (FA— D)

=G CRK s 4K ).

Note that the last two steps of the above calculation must be carried out for both cases
that @+ f is even and that a+f is odd.

THEOREM (3.3). When the conditions (3.1) are satisfied, the solution *U., of
(2.2)a may be given by

1 (1050 (100

(3.5) *U»;,,:-?*Kz,,v-i‘*Kmp)—}-Dw,
where D, is a tensor symmetric in the last two indices such that in non-holonomic
frame
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a) Dg,=D,;i=D,;;=0, (a+b, eif);
b) D,ss,D,.s, Dy, and Dy, are arbitrary when a+f is even;
Daff:DfauZO

1 when a4+ f is odd:
D..,=1*i*K,.,

(3.6) o
D/fa:_é_*a‘*Kﬂff

(D D= g WK —*K.D, (e£f

4
1 Dfab_‘ 3 C*A*Kb f_*}‘*Kfab> (a:/:b>

Proof. In view of (2.2)a, (4. 20>(|:1:|7 p. 1311) and (4.18)([1],p. 1311) it is clear that
the holonomic components of *U,s, can be put in the form (3.5). Since the non-holonomic
components of the tensor D.;, can be written

Doy = U = ACA— DR CAARD* K e CAD¥K 1),
(3.6) may be easily cbtained by using (2.3). (2.5), and (3.3). For example, (3.6)d
can be derived as follows:

Ddfe *U, afe {C*X *}’)*Kfea—{_(*l _!_*l)*Kafe_}‘(*l—*_*l)*Kaef}

:'S—C*é*Kafe -+ *lf*Kfea> - %’ (\*%*Kfea - %*%*Kafe>

=g CRK VK.

4, Singular solutions *U,;, for the secend class. In this ssction we restrict our
considerations to the degenerate case of the second class, namely *K=1/2.
THEOREM (4. 1). A necessary and sufficient condition thar (2.2)a admits at least

one solution *U.,., is
L0271

(4- 1)3 *Kl;w #*KZW—;L K;,,»—Z {*K./(lﬂ) -+ Kv(iu)"‘ KV(‘/‘)J *0,
which is equivalent to its non-holonomic form
4.1Db *K faa=0.

Proof. Since *K=1/2, the condition (4.1)a is evident from (2.2)c. Using the
relation P*k i=(*A)?J. (4.1)a is reduced to to its non-holonemic form
*l(*lz*l*l *1*22*1+*}\2 *12—{—*,1*1 *,1*,1)*sz2+
4.2 +*Z(*l*l—|—*l*l+*22 */12—‘—2*/1*1)*[(
—|—*l(*l*l—f *l*l—l—*l’ ( *,1 2*2*2\*1(
We see that (4.2) is 1dentlcally zero for all z, y, z except {or the cases
z=Ff, y=a, z=a; x=a, y=f, z=a; and x=a, y=a, z=Ff
In these cases, using (2.4) and (2.5), (4.2) is reduced to (4. 1)b.
REMARK. In this case again, we note that the condition (4, 1)b is identical to the
corresponding existence condition for at least one singular solution S.,.. (see [3], p.149).
THEOREM (4.2). When the condition (4.1) is satisfied, the tensor *U.:, has the
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following non-holonomic components:
a) *Uabi:*Ufgi:*Uaaa:07 (aibD;
(4.3) b)Y *U,,.r and Uy,, are arbitrary;

f *Uafz:%—*x*Kafb
) % “

| U= Koy, (az2b).

Proof Using the similar method to the proof of Theorem (3.2), (4.3) follows
from (3.4) in virtue of (2.4), (2.5), and (2.7).

THEOREM. (4.3). When the conditions (4.1) are saiisfied, the solution *U.., of
(2.2)a may be given by

® 1 {100 (1030
(4. 48) lep:'?*Klpy+* Koy +Eoig,
where E,i, is a tensor symmetric in the last two indices such that in non-holonomic
frame
a) *E,,=%*E;;=*E,,=*E.;;—0, (a7b);
{4.5) b) *E,,; and *E;,, are arbitrary,

©) *Ery =Koy, (aB).

Proof. In view of (2.2)a, (4.200([1], p.1311) and (4.18)([1], p.1811) it is clear
that the holonomic components of *U,;, can be put in the form (4.4), Since the non-
holonomic components of the tensor E,;. can be written

Eers =4 Uyem g ACA— 5D Kot CAAD*K ot DK o)
(4.5) 1s obtained from (2.4), (2.5), and (4.3), using the similar methed to the proot
of Theorem (3. 3).

5. The conmection /', Now that we have obtained the singular solutions S,
in our previous paper [3] and the singular solutions *U,i, in the present paper in both
holonomic and non-holonomic ferm for iwo degenerate cases, it is possible for us to
determine the respective degenerate connection /'}, by simply substituting for S;’ and
*Uv, into (2. 1)b.
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