
]. Korean Math. Soc. 7(1970), 33-37 33

Degenerate Cases of the Einstein's Connection

in the *gAv.Unified Field Theory-H. The Tensor *Uv1"

KYUNG TAE CHUNG AND KUN 500 CHANG

shall use the following Roman
4. The indices a, b, c, e, f, g

D.,*gA"= -2Swa"*gAa,
rAp must be of the form

rA"=* U) +Slpv+*Uv1",(2. I)b

where

1. Introduction. This paper is a direct continuation of [3J, in which we gave

the singular solutions S.,,,v of the Einstein's equation for two degenerate cases and the

necessary and sufficient conditions for the existence of at least one singular solution

Sw"v in the Einstein's *gAv-unified field theory. The purpose of the present paper is to

give the corresponding singular solutions *UVAp in holonomic and non·holonomic form and

to derive the conditions for the existence of at least one singular solution *UvA". This

topic will be investigated for all possible indices of inertia.

2. Preliminary results. The notations and results employed in the present paper
arc essentially those of Cl] and [3J, and we begin with a brief recapitulation of the main

results given there.

REMARK. All the considerations in the present paper are dealt for all possible indices

of inertia. Furthermore, we restrict our discussions to two degenerate cases among three

possible cases, namely the degenerate case of *D=O of the first class (i.e., *K=I/3) and

that of the second class (i.e., *K=I/2).
AGREEMENT. In our subsequent considerations we

indices: i, j, k=l, 2, 3, 4; a, b, c=l, 2; e, f, g=3,
do not obey the usual summation convention.

A. In our *gAv-unified field theory whose differential geometrical structure is based

on ([l], p. 1323)

(2.1)a
the connection

del [10JO [10JO

(2.2)a *UVAp=SAPV+2Sv<,,,).
Here *U) are the Christoffel symbols defined by *hA" in the usual way. In each ot the

following cases the tensor *UVAP are found to be:

(For the case *D=O of the first class)
1 [IOJO 001 III

(2.2)b (1 +*K)(3*K-O*UvA"=Z(3*K-O*Kl"v-*K*Kv(lp)+*Kv(A,,)
(10)0

+(*K -1)*Kv<,p).
(For the second class)

(2.2)c
[01]0 (10)0

(1 -4*K2)(2*UVlp+*Kl"v-2*Kv<,p»)
[2IJO [02J1 [01J2 [21J2 (10:;2

==C2*K-l)*Kli'v+*Kli'v+2*K*Kli'v+*Kli'v-2 (2*K*Kv<,p)+
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(20)1 III

. +*Kvc).p) +*Kvc).p)} c*).

B. For each of the degenerate cases we have ([3J, p.146)

(For the case *D=O of the first class)

(2.3) *j(=-*j(=i / 1 -, *j(=-j(=i / 1
1 2 '\/3 3 4 '\/3

(For the second class)

(2.4) *j(=-*j(=i, *j(=-*j(=O
~ I 2 3 4

(For the case *D=O of the first class and for the second class)

(2.5) *Kefg=*Kabc=O, *Kfab = *Kf Cab), *Kaef=*KaCef)'
The non-holonomic components of the singular solutions S",pv of (2. Oa are given by:

(For the case *D=O of the first class)

a) Sail and S faa are arbitrary when a+f is even;

b) Sall=~ *Kaff> Sfaa= ~ *Kfaa when a+f is odd;

c) Sabc=Sefg=O;

f Sabf= ~ {*Kabf+ ~ (-l)b+ f*Kfab} , (a=f::.b)
(2.6) d) l Sefa= ~ {*K.fa+ ~ (-1)a+f*Kafe} , (e=f::.f)

e) Sfab=~*Kfab , (a=f::.b); Safe= ~ *Kaf.. (e=f::.f).

(For the second class)

a) Sfaa are arbitrary; b) Sabf= 1*Kabf ;

d) Safb=~*Kafb (a=f::.b);
;::;

e) Sefa=~*Kda ; f) Sabc=Sefg=O.

3. Singular solutions *UVAP for the case *D=O of the first class. In this section

we restrict our considerations to the degenerate case *D=O of the first class, namely

*K=1/3.
THEOREM (3.1). A necessary and sufficient condition that (2.2)a admits at least

one solution *Uv).p is

(3.1)a

which is equivalent to its non-holonomic form

(3.l)b *Kfaa =*Kaff= 0 when a+f is even.

Proof. Since *K=1/3, the condition (3.1)a is evident from (2.2)b. Using the relation
(p)*kxi=(*j()Po./, (3.1)a is reduced to its non-holonomic form

x

(3.2) 1*KxCye)=O where I=(*j(+*j(+*j(-3*j(*j(*j()
x y z xyz

<*J Note that the result (7.3)b, obtained in [1], p.1323, is wrong. The correct solution is as
given in (2. 2)c above.
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when a+f is odd:

We see that I is identically zero for all x,y,z except for the following two cases:

Case 1. x=f, y=a, z=a; x=a, y=f, z=a; or x=a, y=a, z=f when a+f is
even, in which case, using (2.3) and (2.5), (3.2) is reduced to *Klaa=O;

Case 2. x=a, y=f, z=f; x=f, y=a, z=f; or x=f, Y=f, z=a when a+ f IS

even, in which case, using (2.5) and (2.3) again, (3. 2) is reduced to *K af r~ O.

Hence (3. I)b follows.

REMARK. Note that the condition (3. Db is identical to the existence condition for at

least one S).~v (See [3J, p.147). This fact is not surprising in view of (2.2)a.

THEOREM (3.2). When the conditions (3.1) are satisfied, the tensor *Uv,~ has the
following non-holonomic components:

a) *Uabi=*U,/i=*U;U=O, (a*b, e*f);
b) *Uall, *Uaaf, *Ufaa ' and *Ulaf are arbitrary when a+f is even;

*Uaff=*Ulaa=O

*U - 3 *1 *K(3.3) c) aal-s ~ ala'

f*Ual,= 83 (*;'*Kal,+*/.*Kf,.), (e*f)
d) a (

1*Ulab=-~(*~*Klab+*/.*Kabf)' (a*b).

Proof. In general the non-holonomic components of *Uvl" may be obtained from
(2. 2)a as follows:

(3.4) *UXy ,= ~ (SXy,(*~+*~)+SXZy(*~+*~)+Sy,x(*~-*~)}.

Hence (3.3) follows from (3.4), using (2.3), (2.5) and (2.6). For example,

*Urab = 2
1 {Sfab(*il+*/,)+Sfba(*A.+*;')+Sab/(*/.-*il)}

( aft> a b

= 21 {l.*K lab (*/.+*/.)+.l*Klba(*/.+*il)+~ *ilr*Kabf+.l( - 1) HI *Krabl}2 (a 2 r b 4 ac 3 _

= {.l*,+ 1(-l)H/*il}*K -Ll-*il*K2 1 8' a lab' 8 a ab!

=(.l*/.-.l*A.)*K +l-*A.*K2 f 8 r fab 8 a abf

= 83 (*il*Klab+*il*Kabl).
! a

Note that the last two steps of the above calculation must be carried out for both cases

that a+f is even and that a+f is odd.

THEOREM (3.3). When the conditions (3.1) are satisfied, the solution *Uvl~ of
(2.2)a ~Y be given by

(3.5)

where DVA" is a tensor
frame

1 [10:0 (10)0

*UvA,u=2*KA,uv+*Kvo~)+DvA~'

symmetric in the last two indices such that in non-holonomic
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a) Dabi=De/i=Diii=O, (a*b, e*f);
b) Daff,Da•I , D raa, and D ffa are arbitrary when a+f is even;

\

Dall=Dlaa=O
when a+f is odd:

(3.6) c} Daal=~*~*Klaa

D _1*'*Kffa-s ~ air

D ale= 81 (*A*Kel.-*A*Kale), (e*r
f a

cl)
D lab=-81 (*A*Kbal-*A*Klab), (a*b).

a I

Proof. In view of (2.2;a, (4. 20)([1J, p.1311) and (4. 18)([IJ, p. 1311) it is clear that

the holonomic components of *U,Jp can be put in the form (3.5). Since the non·holonomic

components of the tensor D,Jp can be written

Dxy'=*UXY'- i {(*~ -*~)*KY%x+(*~+*~)*KxY,+(*~+*~)*Kx%y),

(3. 6) may be easily obtained by using (2. 3), (2. 5), and (3. 3). For example, (3.6)d

can be derived as follows:

D.le=*Uale- i {(*~-*~)*Kfe.+(*~+*~*Kale+(*~+*~)*K.et}

- 3 (*A*K +*A*K ) 1 ('*A*K -I 1 *A*K )'-S a afe f fea -2" lea -2" ale

=l(*A"'K -*A*K )8 f eta a .Ie·

4. Singular solutions *U,Jp for the second class. In this section we restrict our
considerations to the degenerate case of the second class, namely *K=I/2.

THEOREM (4.1). A necessary and sufficient condition that (2.2)a admits at least

one solution *U,).p is
L02]I LOI]2 ~21;2 (10)2 (20)1 HI

(4.1)a *KJp,+*K,p,+*KJp,-2 {*K,<,pl+*K,(JPl+*K,(JPl} =0,

which is equivalent to its non-holonomic form

(4.l)b *Kfaa=O.

Proof. Since *K= 1/2, the condition (4. l)a IS evident from (2.2)c. Using th~

relation (pl*k/=(*A)PO/, (4.1)a is reduced to to its non-holonomic form

*A(*.l2*A*A- *A*A2*A+ *A2-*A2+*A*A- *A*A)*Kry,+
::- .r y 2 ..t.' .: Y r )0 i: .f

(4.2) +*A(*A*A+*A*A+*A2+*l2+2*A*A)*K",
~ \' Z .t \ Z l .(' t.. .

+*l(*A*A+ *A*A+*A2+*A2+2*A*A)*K,yx =0.
x ,.

We see that (4.2) is identically zero for all x, y, z except for the cases

x=f, y=a, z=a; x=a, y=f, z=a; and x=a, y=a, z=f
In these cases, using (2.4) and (2.5), (4.2) is reduced to (4.l)b.

REMARK. In this case again, we note that the conditi()Il (4. l)b is identical to the

corresponding existence condition for at least one singular solution Swp, (see [3J, p.149).

THEOREM (4.2). When the condition (4. n is satisfied, the tensor *U"p has the
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following non-lwlonomic components:

a) *Uabi=*Ufgi=*Uaaa=O, (a=f::-b);

(4.3) b) *Uaaf and U faa are arbitrary;

(*U _1 *i/.*K .\ a!r<--z afg·
:) ) .,

l*Ufab = 1*~*Kabj, (a=f::-b).

Proof Using the similar method to the proof of Theorem (3.2), (4.3) follows

from (3.4) in virtue of (2.4), (2.5), and (2.7).
THEOREM. (4.3). When the conditions (4.1) are satisfied, the solution *U'l.O}

(2.2)a may be given by
1 I)o~o (10)0

(4.4) *U".=Z*K,.,+* K,op)+E'lp,

where E,l. is a tensor symmetric in the last two indices such that in non-holonomic

frame

a) *Eabi=*Efgi=*Eaaa=*Eafg=O, (a=f::-b);

(4.5) b) *Eaaf and *Efaa are arbitrary;

c) *Efab=} *~*Kabf' (a*b)

Proof. In view of (2.2)a, (4.20)([1], p.131l) and (4.18)([1], p.131l) it is clear

that the holonomic components of *U,lp can be put in the form (4.4). Since the non­

holonomic components of the tensor Evl. can be written

E,ry,=*UxYz - ~ {(*~-*~)*KYz.r+(*~+*~)*K,ryz+(*~+*~)*K,rzY}'

(4.5) IS obtained from (2.4), (2.5), and (4.3), using the similar method to the proof

of Theorem (3.3).

5. The connection r {I" Now that we have obtained the singular solutions Swpv

in our previous paper [3J and the singular solutions *UVAp in the present paper in both

holonomic and non-holonomic form for two degenerate cases, it is possible for us to

determine the respective degenerate connection r lp by simply substituting for Slpv and

*Uvlp into (2. Ob.
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