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1. Introduction. By definition, a door space is a topological space in which every

1mbset is either open or closed. A door space X is called a maximal door space if it

is not discrete and there does not exist a door topology properly between the discrete

topology and that of X. If X is a door space whose topology cannot be properly weak­

ened to a door topology, then X is called a minimal door space.
The present note is a study of d lor spaces with infinitely many points. Hausdorff

door spaces are investigated rather extensively in Section 2. Among several structure
theorems presented in the section, Theorem 1 provides us with a convenient tool in

our subsequent argument. In the maximal case, Theorem 3 describes in fact all possi­

ble types of spaces which are maximal among topological spaces that are noL discrete.

In Sect:O'1 4, we consider only T1-spaces because it is hopable that counter examplee

to a standard theorem share as many properties with orthodox spaces as possible.

It seems convenient to introduce the notation we shall adopt in this paper. As usual,

the cardinality of a set X is denoted by IXI. If X is a completely regular T1-space,
f3X denotes the Stone-Cech compactification of X. If G is a decomposition of a space

X, the quotient space of G is denoted by X/G. Finally, the word "point" is used in

two senses so as to mean a set having only one point as well, and we use p to stand

for {p} if P is a point. This abbreviation in notation should not cause confusion, how­

ever.

2. Structure of Hausdorff door spaces. The purpose of this section is to seek
conditions characterizing door spaces which are Hausdorff.

We begin with the following lemma

LEMMA 1. A Hausdorff space is a door space if and only if all save possibly one

of its points are open.

Proof· The "only if" part is a mere rephrasement of [2, 2CJ, while the "if" part is

trivial because if there is a point p in a space X such that each point of X -pis open,

then p$A implies that A is open but pEA implies that A is closed for any subset A
of X.

If U is an open set containing p, then U-pis called a deleted open neighborhocd of

p. The following version of Lemma 1 will be of frequent use later. Recall that a filter
on a set is said to be free if the intersection of all members of it is void

THEOREM 1. A space X is a Hausdorff door space with an accumulation point p
if a ut only if (1) X -p is a discrete open subspace of X, and (2) all deleted open
neighborhoods of p form a free filter on X-po
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Proof. The "if" part: Since the two conditions (l) and (2) imply that p is the only

point of X which is not open, Lemma 1 ensures that it suffices to prove that X is a

Hausdorff space. To do this, let x and y be any pair of distinct points in X. If none

of these points coincides with p, then x and y are disjoint neighborhoods of x and y

respectively. But if one of them, say y, is the point p, then (2) implies that there is a

neighborhood U of y with x$.u. Since X-U is open by 0), X-U and U are disjoint
neighborhoods of x and y respectively.

The "only if" part: The point p is evidently not open, and (l) follows from Lem­

ma 1. For (2), we observe that any set containing an open neighborhood of p is aga­

in an open neighborhood of p. Hence the collection of all open neighborhoods is iden­

tical with the nei'jhborhood filter of p. This means, however, that deleted open neigh­

borhoods of p form a filter g: as every neighborhood of p must contain a point other

than p. Finally, g: is a free filter because X -q is a neighborhood of p for each point
q of X with p=;:q.

We now present another characterization of Hausdorff door spaces. Namely,

THEOREM 2. Let X be an infinite discrete space, let K be a nonvoid compact subset

of (3X-X, and let G be the decomposition of XUK with K as the only nondegenerate

element. Then the quotient space (XUK)/G is a Hausdorff door space such that the
projection map g of G is a closed mapping and g(K) is the only accumulation point

of (XUK)/G. Conversely, any Hausdorff door space having an accumulation point
is homeomorphic to a quotient space of the type described above.

Proof. For any subset A of XUK, we have either A=g-'(g(A)) or AUK

=g-'(g(A)). Hence g is a closed mapping as K must be closed in XUK, and the

quotient space is a Hausdorff space. Accordingly, (XUK)/G is a door space by Lemma
1 since g(x) is evidently open for x in X. That g(K) is an accumulation point follows

from the fact each neighborhood of K meets X, and we have completed the proof of

the direct part.

For the converse, let Y be any Hausdorff door space with accumulation point p. Then

X= Y -p is an infinite discrete space by Theorem 1, and Y is paracompact by [3, Lem­
ma 1]. Hence, we may regard the inclusion map i: XcY as a continuous map of X

into the Stone-Cech compactification (3Y of Y. By [2, Theorem 5. 24J, i extends to a
unique continuous map j: (3X -> (3Y. The map j is onto because j(X)=X is dense in (3Y.

Let f denote the projection map of the decomposition F= U-I(y): YEf3Y} of (3X. Since

the topology of the quotient space (3X/F is the largest one which makes f continuous,

the unique bijective map h: f3X/F->(3Y defined by j=h·f is continuous. Moreover, his
a homeomorphism because (3X/F must be compact. Now let K=j-'(p), let G be the

decomposition of XUK having K as the only nondegenerate element, and let g denote

the projection map of G. Since G is evidently a subcollection of F, the quotient space
(XUK)/G is the subspace f(XUK) of (3X/F and g is identical with f cut down to

XUK. Therefore, h gives a homeomorphism between (XUK)/G and Y, because XUK
= j-l(Y) This completes the proof.
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3. Maximal door spaces. In this section, study is continued on Hausdorff door spaces

by means of filter. We first characterize maximal door spaces.

THEOFE~ 3. A Hausdorff space X with p as an acceuulation point is a maximal

door space if and only if the collection 3'" consisting of all deleted open neighborhoods

of p is a free ultrafilter on X ~p.
Proof. The "if" part: Let A be any subset of X. If A - P belongs to ::t, it follows thf/I

A is either an open neighborhood or a deleted open neighborhccd of p according as pEA

or not. Since X is a Hausdorff space, A must be open in either case. However, if

A--p does not belong to ::t, then maximality of 3'" implies that (X-p)-(A-p) is a mem­

ber of 3'". Accordingly, ((X-p) Up)-(A-p) is an open neighborhood of p, and A-p

is a closed set. Hence A is also closed because A=(A-p)Up or A=A-p according to

whether p belongs to A or not, while the one point set p mu!;t be closed in the Haus­

clorff space X. This argument shows that X is a door space. We observe that Theorem 1

implies that X-p is discrete and open. To prove the maximality of X, let X* be the set

X equipped with a topology U which is finer than the original topology of X. If U is

different from the discrete topology, then p is the only accumulaticn point of X* because

the fact that X - P is discrete and open implies that X* - P is also discrete and open (with

respect to the topology U of course.) Hence, all deleted open neighborhoods in X* of p
form a free filter 0) on X*-p=X-p by Theorem 1. Now, the continuity of the identity
map: X*->X implies 0)=:;3'", and we have 3'"=0) as 3'" is an ultrafilter. This proves that

11 is the same as the original topology of X, i. e., X is a maximal space.

The "only if" part: Let X be any maximal door space having p as an accumulation

point. In this case, the collection ::t of all deleted open neighb:>rhoods of p is a free filter

on X-p by Theorem 1. If 3'" is not an ultrafilter, let 0) be any ultrafilter on X-p

which contains::t. 0) is certainly a free filter because 3'" is ODe. Hence, again by Theo­

rem 1, we can properly expand the original topology to a Hausdorff door topology making

p an accumulation point by requiril1g that each member of 0) be a deleted open neighborhood

of p. This contradiction ~roves that ::t is an ultrafilter.

COROLLARY. Every maximal door space X embeds in (3D, where D is a discrete

space with IXI = IDI.
REMARK. The notion of maximal Hausdorff door spaces is the same as that of maximal

topological spaces. This is true because if a space X is not discrete, then it has an accum­

ulation point p and all deleted neighborhoods of p form a filter. Hence, by Theorem 1,

one can expand the original topology to a Hausdorff door topology by letting X -p open

and discrete and by asking that every neighborhood of p with rEq:ect to the original

top ology be open in the new topology.
Let 3'" and 0) be filters on a set D. We say that 3'" and 0) are equivalent if there is a

one to one map of D onto itself which induces a one to one map of 3'" onto 0); otherwise

they are said to be inequivalent.

THEOREM 4. For an infinite cardinal x there are 22
' inequivalent types of maximal

door spaces of cardinality x.
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Proof. Let X=DUp and X'=DUp' be Hausdorff door spaces with p and p' as the
only accumulation points, D being a set of any preassigned infinite cardinaitly x.

If h: DUp-+DUp' is a homeomorphism, then h(p)=p' and hiD induces a bijection of
the filter 3' of deleted open neighborhoods of p to the filter :]" of deleted open neighbor­

hoods of p'. Thus, by Theorem 3, it suffices to show that there are 22' many inequi­

valent free ultrafilters on D. To do this, we observe that any equivalance class of filt­

ers on D has cardinality less than 22'. This is true because the set of all functions from

D to D is of power xz=2"'. Since there are 22' free 1lltrafilters on D by Theorem 9.2
of D], there are 22' many distinct equivalence classes of free ultrafilters on D. This
completes the proof.

Cor O.LARY. If X is an infinite discrete space, then f3X has a subset Y with IYI =
II3XI such that no pair of points in Y are equivalently embedded in f3X.

Proof. Let p be a point of {3X-X, and let :J'p= {UnXI U is a neighborhcod of p
in {3X}. By Gelfand-Kolmogoroff The< r.:m D], the correspondence p -+ :]'p is 1 : 1 from
fJX- X to the set of all free ultrafilters on X. Hence there is a subset Y of {3X - X

with Cl: rJinality 22,xI such that if p, q are distinct points, then :fp and :f. are inequivalent
'x'

as there are 22 ' , many inequivalent free ultrafiIters on X by the proof of Theorem 4.
'x'

In turn, this implies that XUP is not homeomorphic with XUq. Since IfJXI =22 ' , and
any homeomorphism of XUp to XUq extends to a homeomorphism of fJX onto itself,
this completes the proof.

We have already seen that every maximal door space embeds in fJD for suitable diec­
rete D. Although we do not know whether the conveITe of this is true, there do exist
Hausdorff door spaces which cannot be embedded in any {3D. That is, we have

THEOREM 5. There are Hausdorff door spaces of any infinte cardinality which

are rwt emheddable in {3D for any discrete space D.

Proof. Let x be an infinite cardinal, let Y be a discrete space with IY I=x, and let

Z be the one point compactification of a countably infinite discrete set. Then the tOI=ologi.

cal sum of Y and Z is a door space of cardinality x but it can not be embedded in f3D

for any infinite discrete X. For, if X=YUZ is embedded in {3D, so does Z Since Z is
compact and has cardinality !XO this contradicts to the Lemma 4 of [3J.

4. Minimal door spaees. An immediate consequence of Theorem 1 is that every Haus·

dorff door space is totally disconnected. In non-Hausdorff cases, this is far from being
true. In fact, there are many connected door spaces even in the class of TI-spaces as we
are now going to describe. We also prove that all such spaces are minimal cleor spaces.

LEMMA 2. If x is an infinite cardinal, there are 22' types of inequivalent connected
TI-spaces which are door spaces of cardinality x.

Proof· Let X be a set with IXI =x, and let 3' be a free ultrafilter on X. If X is­
equipped with the topology having :]' as a subbase, it is easy to check that a subset A of

X is open if and only if either A is empty or A is a member of :f. But if X is the

sum of two members U, V of :1', then UU V::f::-1J. Hence X is connected. Since:t is

free, X is a Tl"space. Also, X is a door space because either A or X-A is a member
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of ::f. Thus we have proved that every free ultrafilter generates a topology relative to
which X becomes a connected T,-space which is a door ~pace. Since inequivalent filters

generate inequivalent topologies, the argument used in proving Theorem 4 applies in this

case as well to verify the theorem.

LEMMA 3. Any connected door space is a minima! door space

Proof. Let (X, U) be a connected door space and let (.X, 'JJ) be any door space.

Suppose U is properly finer than "J}. Then there is a U-open set A which is not 'JJ-open,

i.e., a U-open set A such that X-B is V-open. Since U is finer than V, ~. 'JJ-open set

is U-open and X-A is U-open. But, then X=AU (X-A) is a separation of X with

respect to the topology U. This contradicts the connectivity of ex, U). Therefore a con­

nected door space is a minimal door space.

By Lemmas 2 and 3, we have many examples of minimal door spaces.
THEOREM 6. For any infinite cardinal x, there are 22' inequivalent minimal door

spaces of cardinality x.
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