L-REGULAR SEMIGROUPS, I

By R.J. Warne

Let E be an idempotent semigroup (a band). The collection E(R) of \mathscr{R} -classes of E may be partially ordered by the following rule: if E_1 , $E_2 \in E(R)$, $E_1 < E_2$ iff e < f for all $e \in E_1$ and $f \in E_2$ ($e \le f$ iff ef = fe = e). E is termed lexicographically ordered if $E(R) = \{E_{(n,\alpha)}: n \in I^0, \text{ the non-negative integers, } \alpha \in Y$, a semilattice with greatest element with $E_{(n,\alpha)} < E_{(m,\beta)}$ iff n > m or n = m and $\alpha < \beta$ and $E_{(n,\alpha)}$ $E_{(n,\alpha)} \subset E_{(n,\alpha\wedge\beta)}$ for α and β non-comparable in Y. A regular semigroup is termed L-regular if its idempotents form a lexicographically ordered band and $E_{(n,\alpha)}$ and $E_{(m,\beta)}$ are contained in the same \mathscr{D} -class of S iff $\alpha = \beta$. We determine the structure of simple L-regular semigroups mod L-semilattices of right groups (theorem 1). From theorem 1, we deduce the structure of simple E-regular semigroups mod E-chains of right groups (corollary 1; see also [4]) and the structure of simple L-inverse semigroups mod L-semilattices of groups (corollary 2: cf [2, theorem 3, 3]).

Unless otherwise specified, we use the notation and terminology of [1]. If X is a semigroup, E_X will denote the set of idempotents of X.

We first make some introductory remarks. Let S be a simple L-regular semigroup. We may label the \mathscr{D} -classes of S as $\{D_{\alpha}: \alpha {\in} Y\}$ with $E_{D_{\alpha}} = \{E_{(n,\alpha)}: n {\in} I^0\}$. From each $E_{(n,\alpha)}$ choose an element $e_{(n,\alpha)}$. The \mathscr{R} -classes of S contained in D_{α} may be labeled $\{Re_{(n,\alpha)}: n {\in} I^0\}$ and the \mathscr{L} -classes of S contained in D_{α} may be labeled $\{L_f: f {\in} E_{(n,\alpha)}, n {\in} I^0\}$. It is easily seen that each \mathscr{R} -class (\mathscr{L} -class) of S contained in D_{α} is an \mathscr{R} -class (\mathscr{L} -class) of D and conversely. By [5, lemma 1.1], each D_{α} is an E-bisimple semigroup (If E (R) is order isomorphic to I under the reverse of the usual order, E is called naturally ordered band. A bisimple semigroup S such that E_S is a naturally ordered band is termed an E-bisimple semigroup.). Hence, the structure of each D_{α} is known mod groups [3, theorem 1.2]. Let us define $t_{((n,\alpha),(m,\alpha))} = \bigcup \{R_{e(n,\alpha)} \cap L_f: f {\in} E_{(m,\alpha)}\}$. If $a {\in} R_e \cap L_f$ where e, $f {\in} E_S$, there exists a unique inverse a^{-1} of a contained in $R_f \cap L_e$ such that $aa^{-1} = e$ and $a^{-1} = e$ [1, theorem 2.18]. Let α_0 denote the greatest element of Y.

In [4], we considered the special case where Y was the finite chain $0>1>2>\cdots$

>d-1 where d is a positive integer. Surprisingly, in most cases the lemmas and their proofs in [4] may be extended to the more general situation with only small modifications. In particular, in [4] make replacements "E" $_{(n,\alpha)}$ for " E_{i+nd} ", "e" $_{(n,\alpha)}$ for "e" $_{i+nd}$, " α_0 " for "0", etc. The proofs of lemmas that may be obtained from corresponding lemmas of [4] in this manner will be omitted. The main structure theorem (theorem 1) will be a consequence of 12 lemmas.

LEMMA 1. (cf., [4, lemma 2]). Let $a \in R_{e_{(0,\alpha_0)}} \cap L_{e_{(1,\alpha_0)}}$. Then, $e_{(0,\alpha)}$ $a \in t_{((0,\alpha),(1,\alpha))}$ and a^{-1} $e_{(0,\alpha)} \in t_{((1,\alpha),(0,\alpha))}$.

REMARK 1, Let $a_{\alpha} = e_{(0,\alpha)}a$. Then, as in [4, remark2], $a_{\alpha}^{-1} = a^{-1}e_{(0,\alpha)}$, $a_{\alpha}^{n} = e_{(0,\alpha)}a^{n}$, and $a_{\alpha}^{-n} = a^{-n}e_{(0,\alpha)}$ for $n \in I^{0}$. This comment is used in establishing several of the lemmas.

LEMMA 2. (cf., [4, lemma 3]) $t_{((k,\alpha),(n,\alpha))}$ $t_{((r,\alpha),(s,\alpha))} \subset t_{((k+r-min(n,r),\alpha),(n+s-min(n,r),\alpha))}$.

LEMMA 3. (cf. [4, lemmas 4-6]) If $g \in t_{((k,\alpha),(k,\alpha))}$, then $ga^{-r} \in t_{((r,\alpha_0),(0,\alpha_0))}$ if r > k and $ga^{-k} \in t_{((k,\alpha),(0,\alpha))}$.

LEMMA 4. (cf., [4, lemma 7]). If $g \in t_{((k,\alpha),(k,\alpha))}$, $ga^s \in t_{((k,\alpha),(k+s,\alpha))}$.

LEMMA 5. (cf., [4, lemma 8]). Every element of S may be uniquely expressed in the form $a^{-n}a^k$ $g_{k\alpha}$ where $g_{k\alpha} \in t_{((k,\alpha),(k,\alpha))}$ and $a^{-n}a^k$ $g_{k\alpha} \in t_{((n,\alpha),(k,\alpha))}$.

LEMMA 6.

$$t_{((n,\alpha),(n,\alpha))} t_{((m,\beta),(m,\beta))} \subset \begin{cases} t_{((n,\alpha),(n,\alpha))} & if n > m \\ t_{((m,\beta),(m,\beta))} & if m > n \\ t_{((n,\alpha\wedge\beta),(n,\alpha\wedge\beta))} & if m = n. \end{cases}$$

PROOF. Using the modifications alluded to above, we may establish that $t_{((n,\alpha),(n,\alpha))}$ $t_{((m,\beta),(m,\beta))} \subset t_{((n,\alpha),(n,\alpha))}$ if n > m or n = m and $\alpha \le \beta$ and $t_{((n,\alpha),(n,\alpha))}$ $t_{((m,\beta),(m,\beta))}$ if m > n or n = m and $\beta \le \alpha$ as in the proof of [4, lemma 9]. Let $g \in t_{((r,\beta),(r,\beta))}$ and $h \in t_{((r,\alpha),(r,\alpha))}$. Hence, $g \mathscr{L} f_{(r,\beta)}$ for some $f_{(r,\beta)} \in E_{(r,\beta)}$. Thus, $g e_{(r,\alpha)} \not \sim f_{(r,\beta)} e_{(r,\alpha)}$. Since $f_{(r,\beta)} e_{(r,\alpha)} \in E_{(r,\alpha\wedge\beta)}$, $g e_{(r,\alpha)} \in D_{\alpha\wedge\beta}$. Hence, $g e_{(r,\alpha)} \in t_{((s,\beta\wedge\alpha),(r,\beta\wedge\alpha))}$ for some $s \in I^0$. Hence, $g e_{(r,\alpha)} = a^{-s}$ a^r a^r

$$ga^{-(r+1)} = g(e_{(r+1,\alpha_0)} a^{-(r+1)})$$

$$= g e_{(r,\alpha_0)} e_{(r+1,\alpha_0)} a^{-(r+1)}$$

$$= g e_{(r, \alpha_0)} a^{-(r+1)}$$

$$= a^{-s} a^{r} (z a^{-(r+1)})$$

Hence, by [3, lemma 1.5], lemma 3, and lemma 2, $ga^{-(r+1)}$ $t_{((s+1,\alpha_0),(0,\alpha_0))}$. However, $ga^{-(r+1)} \in t_{((r+1,\alpha_0),(0,\alpha_0))}$ by lemma 3. Thus, r=s and $ge_{(r,\alpha)} \in t_{((r,\beta \wedge \alpha),(r,\beta \wedge \alpha))}$. Hence, $gh=g(e_{(r,\alpha)}h)=(ge_{(r,\alpha)})h \in t_{(r,\beta \wedge \alpha),(r,\beta \wedge \alpha))}$ by the remark made at the beginning of this proof.

REMARK 2. By [3, lemma 1.12], each $t_{((k,\alpha),(k,\alpha))}$ is a right group and $t_{((k,\alpha),(k,\alpha))} \cong t_{((s,\alpha),(s,\alpha))}$ for all s,k>0. By lemma 2, $E_T=E_S$ where $T=\bigcup\{t_{((n,\alpha),(n,\alpha))}\}$ $t_{(n,\alpha)}=t_{(n,\alpha)$

LEMMA 7. (cf. [4, lemma 10]) $\alpha_{(r,s)}$ is an endomorphism of T and

- 1) $t_{((k,\alpha),(k,\alpha))} \alpha_{(r,s)} \subset t_{((r,\alpha_0),(r,\alpha_0))}$ if s > k
- 2) $t_{((k,\alpha),(k,\alpha))} \alpha_{(r,s)} \subset t_{((k+r-s,\alpha),(k+r-s,\alpha))}$ if $k \ge s$. $\alpha_{(s,s)}$ is an inner right translation of T determined by an idempotent of $t_{((s,\alpha_0),(s,\alpha_0))}$.

PROOF. With the proof of [4, lemma 10] as a guide, lemma 3, [3, lemma 1.5], lemma 2, lemma 1, remark 1, [3, lemma 1. 13], lemma 4, and lemma 6 are employed.

LEMMA 8.
$$a^{-k}$$
 a^{p} a^{-r} $a^{s} = a^{-(k+r-min(p,r))}$ $a^{p+s-min(p,r)}$.

LEMMA 9. (cf. [4, lemma 12]). If $g_{p\alpha} \in t_{((p,\alpha),(p,\alpha))}$ and $h_{s\beta} \in t_{((s,\beta),(s,\beta))}(a^{-k}a^{p}g_{p\alpha})$ $(a^{-r}a^{s}h_{s\beta}) = a^{-(k+r-min(p,r))}a^{p+s-min(p,r)}g_{p\alpha}\alpha_{(s,r)}h_{s\beta}$, where $g_{p\alpha}\alpha_{(s,r)}h_{s\beta}$ $\in t_{((s,\beta),(s,\beta))}$ if r > p; $t_{(p+s-r,\alpha),(p+s-r,\alpha))}$ if p > r; $t_{((s,\alpha\wedge\beta),(s,\alpha\wedge\beta))}$ if p = r.

PROOF. Employ lemmas 2, 6, 7, and 8.

If X is a semigroup, let $\varepsilon(X)$ denote the semigroup of endomorphisms of X (iteration).

LEMMA 10. (cf. [4, lemma 13]) The mapping $(n,r) \rightarrow \alpha_{(n,r)}$ is an anti-homomorphism of C, the bicyclic semigroup into $\varepsilon(T)$. Lemma 11 (cf. [4, lemma 14]). $S \cong \{((n,k),g_{k\alpha}):g_{k\alpha} \in t_{((k,\alpha),(k,\alpha))}, n, k \in I^0, \alpha \in Y\}$ under the multiplication $((n,k),g_{k\alpha})$ $((r,s),h_{s\beta})=((n,k)(r,s),(g_{k\alpha}\alpha_{(s,r)}h_{s\beta}))$ where juxtaposition denotes multiplication in C and T.

PROOF. By lemma 6 and lemma 9, $(a^{-n}a^pg_{p\alpha})\phi=(n,p)$, $g_{p\alpha}$ is the required isomorphism.

Let T be a semigroup which is a union of a collection of pairwise disjoint groups

 $\{T_{(k,\alpha)}: k \in I^0, \ \alpha \in Y, \ \text{a semilattice with greatest element} \ \alpha_0\}$ such that

$$T_{(k,\alpha)} T_{(r,\beta)} \subset \begin{cases} T_{(k,\alpha)} & \text{if } k > r \\ T_{(r,\beta)} & \text{if } r > k \\ T_{(r,\alpha \wedge \beta)} & \text{if } r = k \end{cases}$$

and such that E_T is a lexicographically ordered band. We call T an L-semilattice Y of right groups.

LEMMA 12. (cf. [4, lemma 15]). Let $T = \{T_{(s,\alpha)} : s \in I^0, \alpha \in Y, a \text{ semilattice } with greatest element $\alpha_0\}$ be an L-semilattice Y of right groups and let C denote the bicyclic semigroup. Let $(n,r) \rightarrow \alpha$ denote an anti-homomorphism of C into $\varepsilon(T)$ such that for each $s \in I^0$, $\alpha_{(s,s)}$ is an inner right translation of T determined by an idempotent of $T_{(s,\alpha_0)}$ (i.e. for all $g \in T$, $g \alpha_{(s,s)} = ge$ for some $e \in E_{T(s,\alpha_0)}$) and for k, $r,s \in I^0$

$$T_{(k,\alpha)}\alpha_{(r,s)} \subset \begin{cases} T_{(r,\alpha_0)} & \text{if } s > k \\ T_{(k+r-s,\alpha_0)} & \text{if } k \geqslant s. \end{cases}$$

Let $S = \{(n,k), g_{k\alpha}\}$: $g_{k\alpha} \in T_{(k,\alpha)}$, $k \in I^0$, $\alpha \in Y\}$ under the multiplication $((n,k), g_{k\alpha})$ $((r,s), h_{s\beta}) = ((n,k)(r,s), g_{k\alpha}\alpha_{(s,r)}h_{s\beta})$ where juxtaposition denotes multiplication in C and T. Then, S is a simple L-regular semigroup.

PROOF. Closure and associativity are immediate. The following facts are established as in the proof of [3, lemma 1.15] with the usual modifications: S is simple, $E_S = \{((k,k), g_{k\alpha}) : g_{k\alpha} \in E_{T_{(k,\alpha)}}, k \in I^0, \alpha \in Y\}, ((n,k)g_{k\alpha}) \mathcal{R}((r,s), h_{s\beta}) \text{ iff } n = r \text{ and } \alpha = \beta, \text{ and } ((n,k), g_{k\alpha}) \mathcal{D}((r,s), h_{s\beta}) \text{ iff } \alpha = \beta. \text{ Thus, we may write the } \mathcal{R}\text{-classes of } E_S \text{ as } \{E_{(k,\alpha)} : k \in I^0, \alpha \in Y\} \text{ where } E_{(k,\alpha)} = \{((k,k), g_{k\alpha}) : g_{k\alpha} \in E_{T_{(k,\alpha)}}\}.$ Thus, $E_{(k,\alpha)}$ and $E_{(r,\beta)}$ are contained in the same $\mathcal{D}\text{-class}$ of S iff $\alpha = \beta$. By a straight forward calculation, E_S is a lexicographically ordered band. The $\mathcal{D}\text{-classes}$ of S are $\{D_\alpha : \alpha \in Y\}$ where $D_\alpha = \{((n,k), g_{k\alpha}) : g_{k\alpha} \subset T_{(k,\alpha)}, n, k \in I^0\}$. Since each is a regular $\mathcal{D}\text{-class}$, S is a regular semigroup. Let $\beta_{(n,r)} = \alpha_{(r,n)}$.

THEOREM 1. Let S be a simple L-regular semigroup. Then, there exists an L-semilattice Y of right groups $T = \bigcup \{T_{(k,\alpha)} : k \in I^0, \alpha \in Y, a \text{ semilattice with greatest element } \alpha_0\}$ and a homomorphism $(n,r) \rightarrow \beta_{(n,r)}$ of C, the bicyclic semigroup into $\varepsilon(T)$, the semigroup of endomorphisms of T, such that

- (1) for each $k \in I^0$, there exists $e_{(k,\alpha_0)} \in E_{T_{(k,\alpha_0)}}$ such that $g\beta_{(k,k)} = ge_{(k,\alpha_0)}$ for all $g \in T$;
 - (2) For each $k, r, s \in I^0$,

$$T_{(k,\alpha)} \beta_{(s,r)} \subset \begin{cases} T_{(r,\alpha_0)} & \text{if } s > k \\ T_{(k+r-s,\alpha)} & \text{if } k \geqslant s \end{cases}$$

Furthermore, $S\cong\{((n, k), g_{k\alpha}): g_{k\alpha}\in T_{(k,\alpha)}, n, k\in I^0, \alpha\in Y\}$ under the multiplication

(3) $((n,k), g_{k\alpha})((r,s), h_{s\beta}) = ((n,k)(r,s), g_{k\alpha} \beta_{(r,s)} h_{s\beta})$ where juxtaposition denotes multiplication in C and T. Conversely, let T be an L-semilattice Y of right groups $\{T_{(k,\alpha)}: k \in I^0, \alpha \in Y, a \text{ semilattice with greatest element } \alpha_0\}$, and let $(n,r) \to \beta_{(n,r)}$ be a homomorphism of C into $\varepsilon(T)$ such that (1) and (2) are valid. Then, $((n,k), g_{k\alpha}): g_{k\alpha} \in T_{(k,\alpha)}, n, k \in I^0, \alpha \in Y\}$ under the multiplication (3) is a simple L-regular semigroup.

PROOF. The theorem is valid by lemma 6, remark 2, lemma 7, lemma 10, lemma 11.

A semigroup T which is a union of a collection of pairwise disjoint right groups $\{T_k: k \in I^0\}$ such that $T_kT_r \subset T_{\max(k,r)}$ and E_T is a naturally ordered band is termed an E-chain of right groups. Let N denote the natural numbers.

COROLLARY 1. (Warne, [4]). Let S be a simple E-regular semigroup. Then, there exists an E-chain T of right groups $\{T_{kd+i}: k \in I^0, d \in N, i \in \{0, 1 \dots d-1\}$ and a homomorphism $(n,r) \rightarrow \beta_{(n,r)}$ of C into $\varepsilon(T)$, such that

- (1) for each $k \in I^0$, there exists $e_{kd} \in E_{T_{kd}}$ such that $g \beta_{(k,k)} = g e_{kd}$ for all $g \in T$:
- (2) for each $k, r, s \in I^0$,

$$T_{kd+i} \beta_{(s,r)} \subset \begin{cases} T_{rd} & \text{if } s > k \\ T_{(k+r-s)d+i} & \text{if } k \geqslant s \end{cases}$$

Furthermore, $S \cong \{(n,k), g_{ki}\}: g_{ki} \in T_{kd+i}, n, k \in I^{\circ}, 0 \leq i \leq d\}$ under the multiplication

(3) $((n,k), g_{ki})$ $((r,s), h_{sj})=((n,k)(r,s), g_{ki} \beta_{(r,s)} h_{sj})$ where juxtaposition denotes multiplication in C and T.

Conversely, let T be an E-chain of right groups $\{T_{kd+i}: k \in I^0, d \in N, i \in \{0, 1, \dots, d-1\}\}$ and let $(n,r) \rightarrow \beta_{(n,r)}$ be a homomorphism of C into $\varepsilon(T)$ such that (1) and (2) are valid. Then, $\{((n,k),g_{ki}): g_{ki} \in T_{kd+i}, n,k \in I^0, d \in N, i \in \{0,1,\dots, d-1\}\}$ under the multiplication

(3) is a simple E-regular semigroup.

PROOF. Let S be a simple E-regular semigroup. Then, S has $d \mathcal{D}$ -classes, $D_0 D_1$

..., D_{d-1} , say [4, lemma 1]. We may write $E(R) = \{E_{nd+i} = E_{(n,i)} : n \in I^0, i \in \{0,1,d-1\}\}$ with $E_{(n,i)} < E_{(m,j)}$ iff n > m or n = m and i > j. By [4, remark 1], $E_{(n,i)}$ and $E_{(n,j)}$ are contained in the same \mathscr{D} -class of S iff i = j. Thus, S is a simple L-regular semigroup with $Y = \{0 > 1 > \cdots > d-1\}$. To obtain the corollary let $T_{(k,i)} = T_{kd+i}$ and $\alpha_0 = 0$ in theorem 1.

A semilattice E is termed lexicographically ordered if $E = \{e_{(n,\alpha)} : n \in I^0, \alpha \in Y, \alpha \in Y, \alpha \in Y \}$ a semilattice with greatest element and $e_{(n,\alpha)} < e_{(m,\beta)}$ iff n > m or n = m and $\alpha < \beta$. A regular semigroup S is termed an L-inverse semigroup if E_S is a lexicographically ordered semilattice and $e_{(n,\alpha)}$ and $e_{(m,\beta)}$ are contained in the same \mathscr{D} -class of S iff $\alpha = \beta$. A semigroup T is termed an L-semilattice Y of groups if T is a union of a collection of pairwise disjoint groups $\{T_{(k,\alpha)} : k \in I^0, \alpha \in Y, \text{ a semilattice with greatest element} and <math>E_T$ is a lexicographically ordered semilattice.

COROLLARY 2. Let S be a simple L-inverse semigroup. Then, there exists an L-semilattice Y of groups $T = \bigcup \{G_{(n,\alpha)} : n \in I^0, \alpha \in Y, a \text{ semilattice with greatest element } \alpha_0\}$ and a homomorphism $(n,r) \to \beta_{(n,r)}$ of C into $\varepsilon(T)$ such that

- (1) for each $k \in I^0$, there exists $e^2_{(k,\alpha_0)} = e_{(k,\alpha_0)}$ such that $g \beta_{(k,k)} = g e_{(k,\alpha_0)}$ for all $g \in T$;
 - (2) for each $k, r, s \in I^0$,

$$G_{(k,\alpha)} \beta_{(s,r)} \subset \begin{cases} G_{(r,\alpha_0)} & \text{if } s > k \\ G_{(k+r-s,\alpha)} & \text{if } k \geqslant s \end{cases}$$

Furthermore, $S \cong \{((n,k), g_{k\alpha}) : g_{k\alpha} \in G_{(k,\alpha)}, n, k \in I^0, \alpha \in Y\}$ under the multiplication

(3) $((n,k), g_{k\alpha})((r,s), h_{s\beta}) = ((n,k)(r,s), g_{k\alpha} \beta_{(r,s)} h_{s\beta})$ where juxtaposition denotes multiplication in C and T.

Conversely, let T be an L-semilattice Y of groups $\{G_{(k,\alpha)}: k \in I^0, \alpha \in Y, a \text{ semilattice with greatest element } \alpha_0\}$ and let $(n,r) \rightarrow \beta_{(n,r)}$ be a homomorphism of C into $\varepsilon(T)$ such that (1) and (2) are valid. Then, $\{((n,k), g_{k\alpha}): g_{k\alpha} \in G_{(k,\alpha)}, n, k \in I^0, \alpha \in Y\}$ under the multiplication (3) is a simple L-inverse semigroup.

PROOF. Noting that each $t_{(n,\alpha),(n,\alpha)}$ is a group if S is an inverse semigroup, and utilizing [1, lemma 4.8] corollary 2 is an immediate consequence of theorem 1.

University of Alabama at Birmingham

5-,-

REFERENCES

- [1] Clifford, A.H. and Preston, G.B., The algebraic theory of semigroups, Math. Surveys of the American Math. Soc, 7, Vol. 1, Providence, R.I., 1961.
- [2] Munn, Walter Douglas, On simple inverse semigroups, Semigroups, Forum, 1, 63-74. 1970,
- [3] Warne, R.J., E-bisimple semigroups, to appear.
- [4] Warne, R.J., E-regular semigroups, I, to appear.
- [5] Warne, R. J., Regular *D*-classes whose idempotents obey certain conditions, Duke Math. J., 33, 187-195, 1966.