A NOTE ON HYPERSURFACES OF ALMOST CONTACT MANIFOLDS

By Jin Suk Pak

1. Introduction.

In a recent paper [1], the authors consider a $2n$-dimensional manifold M imbedded in almost contact manifold M^{2n+1} with fundamental affine collineation ϕ, fundamental vector field ξ and contact form η, and assume that for each $p \in M$ the vector field ξ does not belong to the tangent hyperplane of the hypersurface. This means that the vector field ξ can be taken as the "affine normal" to the hypersurface.

More recently [2], in the case which ξ is always tangent to M, it is known that there exists a vector field N playing the role of "affine normal" along the hypersurface.

In this paper, we consider the case where ξ is always tangent to M.

2. Hypersurfaces of almost contact manifolds.

Let $\tilde{M}=\tilde{M}^{2n+1}(\phi, \xi, \eta)$ be an almost contact manifold, and let $M=M^{2n}$ be a hypersurface imbedded in \tilde{M}. Throughout this paper, we assume that the vector field ξ is always tangent to M. Then it is known that a vector field N exists along the hypersurface M such that

\begin{align}
\phi N &= -A, \quad \eta(N) = 0 \\
\phi X &= fX + \alpha(X) \cdot N
\end{align}

for some vector field A on M, $(1,1)$-type tensor field f and 1-form α.

Applying ϕ to the relation (2.1), we get

$$-X + \eta(X) \xi = f^2 X + \alpha(fX)N - \alpha(X)A,$$

which shows that

\begin{align}
f^2 &= -I + \eta \otimes \xi + \alpha \otimes A, \\
\alpha(fX) &= 0, \quad \eta(A) = 0, \quad \alpha(\xi) = 0, \quad \alpha(A) = 1, \\
f(\xi) &= 0, \quad f(A) = 0, \quad \eta(fX) = 0
\end{align}

for any $X \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the set of all vector fields on M. Thus we...
have that, in an almost contact manifold \tilde{M}, a hypersurface M for the vector field ξ to be tangent to M admits $(f, \xi, A, \eta, \alpha, \lambda)$—structure.

Moreover, if we define a tensor field \tilde{J} as
\[\tilde{J} = f + \eta \otimes A, \]
then we obtain
\[\tilde{J}^2(X) = f^2(X) + \eta(fX)A + \eta(X)f(A) + \eta(X)\eta(A)A = f^2(X), \]
that is, $\tilde{J}^2 = f^2$ on M. From which we have that
\[\tilde{J}^4(X) = -\tilde{J}^2(X) \]
on M, by virtue of (2.2). Since \tilde{J} has the same rank at each point of M, we find that the tensor field \tilde{J} defined as (2.3) is a quartic structure in M.

On the other hand, for the same \tilde{J} we get
\[\tilde{J}^2 = -I + \eta \otimes \xi + \alpha \otimes A, \]
and $\eta(A) = 0$, $\alpha(\xi) = 0$.

Hence we can see that the hypersurface M is to be globally framed.

Combining the above results.

Theorem 1. The hypersurface M imbedded in almost contact manifold \tilde{M} in such a way that the vector field ξ is always tangent to M is a globally framed quartic manifold.

3. Hypersurfaces of Sasakian manifolds.

Let $\tilde{M} = \mathbb{R}^{2n+1}(\phi, \xi, \eta, \mathbb{R})$ be an almost contact manifold, and let ∇ be the Riemannian connection of \tilde{g}. For $X, X \in \mathcal{X}(M)$, we get
\[\nabla_X Y = \nabla_X Y + h(X, Y)N, \]
\[\nabla_X N = -HX + \omega(X)N, \]
where $\nabla_X Y$ and $-HX$ are the tangential parts (with respect to N) of $\nabla_X Y$ and $\nabla_X N$, respectively, to M. We can see that $\nabla : (X, Y) \rightarrow \nabla_X Y$ is a symmetric connection on M, h is symmetric, and is called the second fundamental form of M (with respect to N).

If $h = 0$ on M, then M is called to be totally geodesic. Let g be the induced metric: $g = \tilde{g}/M$. In general, the connection ∇ is not the Levi-Civita connection of g. Using (3.1) and (3.2), we obtain
\[(\nabla_X g)(Y, Z) = h(X, Y)g(N, Z) + h(X, Z)g(Y, N) \]

Suppose that ∇ is the Levi-Civita connection of the induced metric g, then we find
\[2g(\nabla_X Y, Z) = X \cdot g(Y, Z) + Y \cdot g(X, Z) - Z \cdot g(X, Y) + g([X, Y], Z) \]
A Note on Hypersurface of Almost Contact Manifolds

From which we have

\[
(\mathcal{X}) = \mathcal{X}(M).
\]

Since \(N \) is an affine normal, we find from (3.3) and (3.4) the following:

THEOREM 2. In order that the connection \(\nabla \) of the hypersurface \(M \) imbedded in almost contact manifold \(\tilde{M} \) in such a way that the vector field \(\xi \) is always tangent to \(M \) is a Riemannian connection of \(g = \bar{g}/M \), it is necessary and sufficient that \(M \) is totally geodesic.

Now, we assume that \(\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta, \bar{g}) \) is a Sasakian manifold: that is, the following holds good:

\[
(U_{\phi}) = \mathcal{X}(\tilde{M}),
\]

where \(\mathcal{X}(\tilde{M}) \) is the set of all vector fields on \(\tilde{M} \). It is well known that (3.5) implies

\[
(U_{\xi}) = \mathcal{X}(\tilde{M}),
\]

Summing up theorem 2 and 3, we obtain

THEOREM 4. The induced connection \(\nabla \) of the hypersurface \(M \) imbedded in a Sasakian manifold \(\tilde{M} \) in such a way that the vector field \(\xi \) is always tangent to \(M \) cannot be a Riemannian connection of \(g = \bar{g}/M \).

4. Hypersurfaces of affinely cosymplectic manifold.

We assume that \(\tilde{M} = \tilde{M}^{2n+1}(\phi, \xi, \eta) \) is affinely cosymplectic; an almost contact manifold \(\tilde{M}^{2n+1}(\phi, \xi, \eta) \) with a symmetric affine connection \(\tilde{\nabla} \) satisfies

\[\tilde{\nabla}\phi = 0, \tilde{\nabla}\eta = 0.\]

Then we have

\[
(\mathcal{X}_X) = \mathcal{X}(M),
\]

On the other hand
\[v_X Y = (V_X f) Y + f(V_X Y) + h(X, fY) N - \alpha(Y) H X + \alpha(Y) \omega(X) N + (V_X \alpha Y) N. \]

Comparing (4.2) and (4.3), we get

\[(V_X f) Y = \alpha(Y) H X - h(X, Y) A, \]
\[(V_X \alpha) Y = -h(X, fY) - \alpha(Y) \omega(X). \]

Moreover, we find from (4.1), (4.4) and (4.5)

\[[f, f] (X, Y) + d \eta(X, Y) \xi + d\alpha(X, Y) A = \alpha(Y) H f X - \alpha(X) H f Y + \alpha(X) f H Y - \alpha(Y) f H X + (\alpha \wedge \omega)(X, Y) A \]

Now we assume that \(M \) is to be totally flat, then \(H X = 0 \).

Thus we find from (4.6) the following:

THEOREM 5. Suppose that the hypersurface \(M \) imbedded in an affinely cosymplectic manifold \(\tilde{M} \) in such a way that the vector field \(\xi \) is always tangent to \(M \) is to be totally flat. Then the necessary and sufficient condition in order that \((f, \xi, A, \eta, \alpha, \lambda) \)-structure is normal is \(\alpha \wedge \omega = 0 \) on \(M \).

Kyungpook University

REFERENCE
