Inf-Preserving Functors from A to Ens

CHANG KU IM

1. **Introduction.** Let \(I \) and \(A \) be an index category and a small category respectively. For each object \(A \) of \(A \) the constant diagram \(A: I \to \text{Ens} \) is defined by \(A_i(i) = A, \ A_i(k) = 1_A \) for each object \(i \) and map \(k: i \to j \) of \(I \). A lower bound \((A, u)\) of a diagram \(F: I \to \text{Ens} \) consists of an object \(A \) of \(A \) and a natural transformation \(u: A_i \to F_i \). The lower bound \((A, u)\) of \(F \) will be called the infimum of \(F \) if for every lower bound \((A', u')\) of \(F \) there exists a unique map \(a: A' \to A \) such that \(u(i)a = u'(i) \) for all objects \(i \) of \(I \), and we write it by \(\inf F = (A, u) \). A functor \(F: \text{Ens} \to \text{Ens} \) is called the inf-preserving functor or we say that it preserves the infimums if for every diagram \(F: I \to \text{Ens} \), \(\inf F = (A, u) \Rightarrow \inf (F, F') = (F(A), F \cdot u) \). An upper bound, the supremum of a diagram and the sup-preserving functors are also defined dually. We write the opposite category of \(A \) and the category of sets by \(A^\circ \) and \(\text{Ens} \) respectively. J. Lambeck [1] proved that \(A \) is embedded as a sup-dense subcategory into a sup-complete category \(A' \) of all functors from \(A^\circ \) to \(\text{Ens} \) and the embedding functor of \(A \) into the category \(A'' \) of all inf-preserving functors from \(A^\circ \) to \(\text{Ens} \) is sup-dense and sup-preserving. Further he proved that the category \(A'' \) is inf-complete. The purpose of this note is to prove that the opposite \(A''^\circ \) of the category \(A'' \) of all inf-preserving functors from \(A \) to \(\text{Ens} \) is sup-complete and it is inf-complete if for any diagram \(\Theta \) with \(\inf \Theta = (z, t) \), \(t \) is a natural equivalence.

Throughout this note we assume that every diagram has the small index category.

2. **Inf-preserving functors.** Let \(\{a\} \) be a typical one element set and \(T: A \to \text{Ens} \). We may associate with the element \(x \) of \(T(A) \) for all \(A \) of \(A \) the map \(x: \{a\} \to T(A) \) such that \(x(a) = x \). The following lemmas will be stated whose proofs are to be found in [1] and [3] respectively.

Lemma 1. For any object \(A \) of \(A \) the functors \([A, \]: A \to \text{Ens} \) and \([\ , A]: \text{Ens} \to \text{Ens} \) preserves infimums.

Lemma 2. Let \(T \) and \(T' \) be two functors from \(A \) to \(B \) and \(\eta: T \to T' \) a natural equivalence. Then \(T \) preserves infimums if and only if \(T' \) does.

Proposition 1. The functor \(T: A \to B \) preserves infimums if and only if \([B, T(\)]: A \to \text{Ens} \) preserves infimums for all \(B \) in \(B \).

Proof. Assume that \(T \) preserves infimums. The functor \([B, T(\)] \) arises by composition from the inf-preserving functor \(T: A \to B \) and the functor \([B, \]: B \to \text{Ens} \). But the functor \([B, \] \) preserves infimum by the lemma 1. Hence it also preserves infimums. Conversely, assume that the functor \([B, T(\)] \) preserves infs for all \(B \) in \(B \). Let \(D: I \to A \) be a diagram in \(A \) with \(\inf D = (A, u) \). Then the infimum of the diagram \([B, T(\)] \circ D: I \to \text{Ens} \) is \((B, T(A)), v)\), where \(v(i) = [B, T(u(i))] \) for each \(i \) of \(I \). Let \(t(i): B \to T(D(i)) \) be natural in \(i \) of \(I \). We associate with \(t(i) \) mapping \(i(i): \{a\} \to [B, T(D(i))] \). Hence there exists a unique map \(g: \{a\} \to [B, T(A)] \) such that \(t(i) = v(i) \cdot g \). Since \(i(i)(a) = v \)

Received by the editors February 15, 1971.
we have a unique element \(g(\phi) \) of \([B, T(A)]\) such that \(t(\phi) = v(\phi)g(\phi) = T(u(\phi)) \cdot g(\phi) \). Hence \(\inf TD = [T(A), T \cdot u] \).

Proposition 2. Let \(T : A \to C \) be an embedding functor and \(C_0 \) be the subcategory of \(C \), consisting of all objects \(C \) in \(C \) such that the functor \([C, T()] : A \to \text{Ens}\) preserves infimums. Then

(i) the image \(T(A) \) of \(T \) is contained in \(C_0 \).

(ii) \(C_0 \) is the largest subcategory of \(C \) such that the induced embedding functor \(A \to T(A) \to C_0 \) preserves infimums.

(iii) Every supremum of any diagram \(A : J \to C \) in \(C \) is contained in \(C_0 \).

(iv) For any diagram \(\Theta : K \to C_0 \) with \(\inf \Theta = (C', \tau) \) in \(C \) if \(\tau \) is a natural equivalence then \(C' \) is contained in \(C_0 \).

Proof. (i) Since \(T \) is an embedding functor, we have a natural equivalence \(\mu : [A, _] \cong [T(A), T(_)] \) for each object \(A \) of \(A \), where \([A, _] \) and \([T(A), T(_)] \) are two functors from \(A \) to \(\text{Ens} \). The functor \([A, _] \) preserves infimums by the lemma 1. Hence the functor \([T(A), T(_)] \) preserves infimums, by the lemma 2. Therefore \(T(A) \in C_0 \) and \(T(A) \subseteq C_0 \).

(ii) Let \(A \to T(A) \to C_0 \) be an inf-preserving induced embedding functor. By the proposition 1, for each object \(C' \) of \(C' \), the functor \([C', T(_)] \) preserves infimums. Hence \(C' \) is contained in \(C_0 \).

(iii) Let \(d : J \to C_0 \) be any diagram with \(\sup d = (C, v) \) in \(C \). Assume that \(D : I \to A \) is a diagram with \(\inf D = (A, u) \) then \(\inf T \cdot D = ((T(A), T \cdot u)) \) in \(C_0 \). Let \(g : C \to T(D) \) be a natural transformation, then we have the map \(g(i)v(j) \) in \(C \) such that

\[
\begin{align*}
A(j) & \xrightarrow{v(j)} C \\
& \downarrow g(i) \\
& \rightarrow TD(i)
\end{align*}
\]

Hence there exists a unique map \(S(j) : A(j) \to T(A) \) such that

\[
\begin{align*}
A(j) & \xrightarrow{v(j)} C \\
S(j) & \downarrow f \\
T(A) & \rightarrow TD(i)
\end{align*}
\]

Since \(T(u(i)) \cdot S(j) : A(j) \to TD(i) \) is a natural in \(i \in I \), so does \(S(j) \) in \(j \in J \). Hence there exists a unique map \(f : C \to T(A) \) such that \(S(j) = f \cdot v(j) \). Therefore \(T(u(i)) \cdot S(j) = T(u(i))f \cdot v(j) = g(i)v(j), \) hence \(g(i) = T(u(i))f \), that is, \(T(A) \) is the infimum in \(C_0 \cup \{C\} \), so that \(C_0 \cup \{C\} = C_0 \) by (ii).

(iv) Consider any diagrams \(\Theta : K \to C_0 \) with \(\inf \Theta = (C', \tau) \) in \(C \), where \(\tau \) is a natural equivalence and \(D : I \to A \) with \(\inf D = (A, u) \). Then \(T(A) \to TD(i) \) is a natural in \(i \in I \). Let \(x(i) : C \to TD(i) \) be a natural in \(i \in I \), for each \(k \) of \(K \) then we have a natural map \(x(i)t^{-1}(k) : \Theta(k) \to TD(i) \) in \(i \) of \(I \). There exists a unique map \(y(k) : \Theta(k) \to T(A) \)
such that \(T(u(i)) \cdot y(k) = x(i) \cdot t^{-1}(k) \). Hence \(T(u(i)) \cdot y(k) t(k) = x(i) \).

\[
\begin{array}{c}
\Theta(k) \\
T(u(i)) \\
T(A) \\
\end{array} \quad \begin{array}{c}
t^{-1}(k) \\
y(k) \\
x(i) \\
\end{array} \quad \begin{array}{c}
C' \\
T(D(i)) \\
\end{array}
\]

commutes.

By (ii), \(C' \) must be in \(C_0 \).

3. Category of inf-preserving functors. Let \(A \) be any small category. We shall write \([A, \text{Ens}]_{\text{inf}}\) for the category of all inf-preserving functors from \(A \) to \(\text{Ens} \).

Lemma 3. For each object \(C \) of \(C \) and each functor \(S: C \to \text{Ens} \), there is a bijection \(\psi: S(C) \cong [h, S] \), where \(h \) is a functor \([C, \]:\ C \to \text{Ens}\) and the map \(\psi \) is defined for \(x \in S(C) \) and \(f \in h(A) \) for \(A \) of \(C \) as \(\psi(x)(f) = (S(f))(x) \), [2].

By the lemma 1 the canonical embedding \(H: A \to [A, \text{Ens}]^\circ \) induce the embedding of \(A \) into \([A, \text{Ens}]_{\text{inf}}\). Using the proposition 2, we shall show the following theorem.

Theorem. (1) The category \([A, \text{Ens}]^\circ_{\text{inf}}\) is sup-complete.

(2) For any diagram \(\Theta \) with \(\inf \Theta = (z, t) \) in \([A, \text{Ens}]^\circ\) if \(t \) is a natural equivalence then \([A, \text{Ens}]_{\text{inf}}\) is inf-complete.

Proof. (1) Let \(B \) be the category of all functors \(T: A \to \text{Ens} \) in \([A, \text{Ens}]^\circ\) such that \([T, H(\)]\) preserves infimums. By the lemma 3, \(T \cong [T, H(\)] \). Therefore we have \([A, \text{Ens}]_{\text{inf}} = B \) by the lemma 2. Hence the category \(B \) is sup-complete by (iii) of the proposition 2.

(2) Since \([A, \text{Ens}]_{\text{inf}} = B \), by (iv) o proposition 2 it follows that \([A, \text{Ens}]_{\text{inf}}\) is inf-complete.

References

Inha Institute of Technology