ON ANTI-COMMUTE \((f, g, u, v, \lambda)\)-STRUCTURES ON SUBMANIFOLDS OF CODIMENSION 2 IN AN EVEN DIMENSIONAL EUCLIDEAN SPACE

By Jin Suk Pak

\section{Introduction}

A structure induced on a submanifold of codimension 2 of an almost Hermitian manifold and called an \((f, g, u, v, \lambda)\)-structure has been studied in [1], [2], [3], [4]. The submanifolds of codimension 2 in an even-dimensional Euclidean space in terms of this structure have been studied by Ki [4], [5], Okumura [7], Pak [4], Yano [5], [6], and the others.

In the present paper, we study submanifolds of codimension 2 of the even-dimensional Euclidean space under the assumptions such that the linear transformations \(h_i^j\) and \(k_l^i\) which are defined by the second fundamental tensors anti-commute with \(f_i^j\).

In \(\S 2\), we consider a submanifold of codimension 2 of a Kählerian manifold and find several equations which the induced \((f, g, u, v, \lambda)\)-structure satisfies.

In \(\S 3\), we study submanifolds of codimension 2 of the even dimensional Euclidean space under the our assumptions stated above. In the last \(\S 4\), we study submanifolds under the same assumptions in a locally Fubinian manifold.

\section{Certain submanifolds of codimension 2 of a Kählerian manifold ([4], [6]).}

Let \(M\) be a 2n-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods \(\{U; x^h\}\) and which is differentiably immersed in a \((2n+2)\)-dimensional Kählerian manifold \(\tilde{M}\) covered by a system of coordinate neighborhoods \(\{\tilde{U}; y^\kappa\}\) as a submanifold of codimension 2 by the equations

\[y^\kappa = y^\kappa(x^h), \]

where, hear and in the sequel the indices \(\kappa, \lambda, \mu, \nu, \ldots\) run over the range \(\{1, 2, \ldots, 2n+2\}\) and \(h, i, j, \ldots\) over the range \(\{1, 2, \ldots, 2n\}\) respectively.

We put \((F^\kappa_{\mu}, G_{\mu\lambda})\) be the Kählerian structure, that is,

\[F^\kappa_{\mu} F^\lambda_{\nu} = -\delta^\kappa_{\lambda}, \]

and \(G_{\mu\lambda}\) a Riemannian metric such that

\[G^\beta_{\mu\lambda} F^\beta_{\mu} F^\alpha_{\lambda} = G_{\mu\lambda}, \]

\[\tilde{\nabla}_{\mu} F^\kappa_{\lambda} = 0, \]
where ∇ denotes by the operator of covariant differentiation with respect to the Christoffel symbols \(\Gamma^{\kappa}_{\mu\lambda} \) formed with \(G_{\mu\lambda} \) and put

\[B_i^\kappa = \partial_i y^\kappa, \quad (\partial_i = \partial/\partial x^i). \]

Then we find \(B_i^\kappa \) is, for fixed \(i \), a local vector field of \(M \) tangent to \(M \) and the vectors \(B_i^\kappa \) are linearly independent in each coordinate neighborhood. \(B_i^\kappa \) is also, for fixed \(\kappa \), a local 1-form of \(M \) and then the transforms \(F_\lambda^\kappa B_i^\lambda \), \(F_\lambda^\kappa C^\lambda \) and \(F_\lambda^\kappa D^\lambda \) may be respectively expressed as linear combinations of \(B_i^\kappa \), \(C^\kappa \) and \(D^\kappa \), that is,

\[
F_\lambda^\kappa B_i^\lambda = f_i^h B_h^\kappa + u_i C^\kappa + v_i D^\kappa, \tag{2.1}
\]

\[
F_\lambda^\kappa C^\lambda = -u_i^j B_j^\kappa + \lambda D^\kappa, \]

\[
F_\lambda^\kappa D^\lambda = -v_i^j B_j^\kappa + \lambda C^\kappa,
\]

where \(C^\kappa \) and \(D^\kappa \) are two mutually orthogonal unit vectors of \(M \) normal to \(M \) and chosen in such a way that \(2n+2 \) vectors \(B_i^\kappa \), \(C^\kappa \), \(D^\kappa \) give the positive orientation of \(M \), \(g_{ji} \) being the Riemannian metric on \(M \) induced from that of \(\bar{M} \), \(\lambda \) is a function on \(M \) and

\[u^i = u_i g^{ii}, \quad v^i = v_i g^{ii}. \]

We can easily verify that \(\lambda \) is a function globally defined on \(M \). From (2.1) and taking account of itself, we find

\[
f_j^i f_i^h = -\partial_j^h + u^h u_j + v^h v_j, \tag{2.2}
\]

\[
f_i^h u_j^i = -\lambda v^h, \quad f_i^h v_j^i = \lambda u^h, \]

\[
f_h^i u_i^j = \lambda v^h, \quad f_h^i v_i^j = -\lambda u_h, \]

\[
u_i u_i = 1 - \lambda^2 = v_i v_i, \]

\[
u_i v_i = 0, \quad v_i u_i = 0,
\]

that is, \(M \) admits an \((f, g, u, v, \lambda)\)-structure [6].

Moreover, \(f_{it} \) is skew-symmetric with respect to \(i \) and \(t \), where

\[f_{it} = f_i^s g_{ts} \]

We denote by \(h_{ji} \) and \(\nabla_i \) the Christoffel symbols formed with \(g_{ji} \) and by the operator of covariant differentiation with respect to \(h_{ji} \) respectively.

Then the equations of Gauss and Weingarten of \(M \) are
\[\nabla_j B^\kappa = h_{ij} C^\kappa + k_{ji} D^\kappa, \]

(2.3) \[\nabla_j C^\kappa = -h^i_j B^\kappa + j^i_j D^\kappa \]

and

\[\nabla_j D^\kappa = -k^i_j B^\kappa - f C^\kappa \]

respectively, where \(h_{ji} \) and \(k_{ji} \) are the second fundamental tensors with respect to \(C^\kappa \) and \(D^\kappa \) respectively, and \(h^i_j, k^i_j \) are Weingarten maps corresponding the normals defined by

\[h^i_j = h_{ji} g^ti, \quad k^i_j = k_{ji} g^ti, \]

and \(l_j \) is the third fundamental tensor.

From (2.1) and (2.3), we have [6]

\[\nabla_j f^i_s = -h^i_j u^s + h^i_j u^s - k^s_j v^s + h^s_j v^s, \]

\[\nabla_j u^i = -h^i_j f^i_s - \lambda k^i_j + l^i_j v^i, \]

(2.4)

\[\nabla_j v^i = -k^i_j f^i_s + \lambda h^i_j - l^i_j u^i \]

\[\nabla_j \lambda = k^i_j u^i - h^i_j v^i. \]

From now and in the sequel we suppose that in the submanifold \(M \) \(h^i_j \) and \(k^i_j \) anti-commute with \(f^i_j \), that is,

(2.5) \[f^i_j h^i_j = -h^i_j f^i_j, \quad f^i_j k^i_j = -k^i_j f^i_j, \]

or equivalently \(f^i_j h_{i\bar{i}} \) and \(f^i_j k_{i\bar{i}} \) are symmetric with respect to \(j \) and \(i \) and that the globally defined function \(\lambda \) is constant different from 0 and 1 on the submanifold \(M \).

Transvecting (2.5) with \(f^i_j \) and using of (2.2), we get

\[h^i_j = (1 - \lambda^2)(\alpha + \gamma), \]

where we have put

\[h_{i\bar{i}} u^i u^i = (1 - \lambda^2)\alpha, \quad h_{i\bar{i}} v^i v^i = (1 - \lambda^2)\gamma. \]

Transvecting again (2.5) by \(u^i \) and taking account of (2.2), we also get

\[0 = h_{i\bar{i}} u^i f_{i\bar{i}} - \lambda h_{i\bar{i}} v^i, \]

and then by transvecting the above equation with \(f^{i\bar{j}} \) we obtain

\[h^i_j u^i = \alpha u^j + \beta v^j, \]

where

\[h_{i\bar{i}} u^i v^i = (1 - \lambda^2)\beta \]
On the other hand, transvecting (2.5) by v^j, we can also find
\[h^i_j v^j + \lambda h^i_{ij} u^i = 0. \]
Transvecting the above equation with f^{ij} and taking account of $(2, 2)$, we have
\[h^i_j v_i = \beta u_j + \gamma v_j. \]
From these relations we can see
\[\lambda(\alpha + \gamma) = 0. \]
By the similar method we can also verify that
\[k^i_j u^i = \alpha u_j + \beta v_j, \quad k^i_j v^i = \beta u_j + \gamma v_j, \quad k^s_s = 0, \]
where we have put
\[k^i_{st} u^i u^s = (1 - \lambda^2) \alpha, \quad k^i_{st} u^i v^s = (1 - \lambda^2) \beta, \]
\[k^i_{st} v^i v^s = (1 - \lambda^2) \gamma. \]
Moreover, from (2.4) we have
\[h^i_{ij} v^i = k^i_{ij} u^i. \]
Thus, summing up, we find
\[h^i_{ij} u^i = \alpha u_j + \beta v_j, \]
\[h^i_{ij} v^i = \beta u_j - \alpha v_j, \]
(2.6)
\[k^i_{ij} u^i = \beta u_j - \alpha v_j, \]
\[k^i_{ij} v^i = - \alpha u_j - \beta v_j, \]
\[h^s_s = 0, \quad k^s_s = 0. \]

§ 3. Anti-submanifold of codimension 2 in a Euclidean space.

In this section we consider the submanifold M of codimension 2 under the assumptions stated in the previous section in a $(2n + 2)$-dimensional Euclidean space.

In this submanifold M, it is well known that the equations of Gauss, Codazzi and Ricci are
\[R_{kij}^s = h^s_k h_{ij} - h^s_j h_{ki} + k^s_k k_{ji} - k^s_j k_{ki} \]
(3.1)
\[\nabla h_{ij} - \nabla h_{ki} - l_k k_{ji} + l_j k_{ki} = 0, \]
\[\nabla k_{ji} - \nabla k_{k} - l_k h_{ji} - l_j h_{ki} = 0, \]
(3.2)
and
On anti-commute \((f, g, u, v, i)\)-structures on submanifolds of codimension 2 in an even dimensional Euclidean space.

\[(3.3) \quad \nabla_j^t \mathcal{J}_i - \nabla_i^t \mathcal{J}_j + h_j^i k_{ij} - h_i^i h_{ji} = 0,\]

respectively, where \(R_{kji}^s\) are components of the curvature tensor of \(M\).

Now, covariantly differentiating the first equation of \((2.6)\), we have

\[
(\nabla_k h_{ij}) u^i + h_{ji} \nabla_k u^i = (\nabla_k \alpha) u_j + (\nabla_k \beta) v_j + \alpha \nabla_k u_j + \beta \nabla_k v_j.
\]

Taking the skew-symmetric part of this equation with respect to \(k\) and \(j\), and then substituting \((2.6)\) and \((3.2)\) we can see

\[
(3.4) \quad 2h_{k^i} h_{ji} f^{st} + \lambda (h_{k^i} k_{j}^i - h_{ji} k_{k}^i) = (\nabla_k h_{ij}) u^i + h_{ji} \nabla_k u^i = (\nabla_k \alpha) u_j + (\nabla_k \beta) v_j + \alpha \nabla_k u_j + \beta \nabla_k v_j,
\]

by virtue of \((2.2)\), \((2.4)\) and \((2.5)\).

Tranvecting \((3.4)\) with \(u^j\) and taking account of \((2.6)\), we have

\[
0 = (1 - \lambda^2) (\nabla_k \alpha - 3 \beta l_k^i) u_j - (\nabla_j \alpha - 3 \beta l_j^i) u_k - u^i (\nabla_i \beta + 3 \alpha l_i^j) v_k,
\]

or

\[
(3.5) \quad 2h_{k^i} h_{ji} f^{st} + \lambda (h_{k^i} k_{j}^i - h_{ji} k_{k}^i) = 0.
\]

On the other hand, covariantly differentiating the second equation of \((2.6)\), we obtain

\[
(\nabla_k h_{ij}) v^i + h_{ji} \nabla_k v^i = (\nabla_k \beta) u_j - (\nabla_k \alpha) v_j + \beta \nabla_k u_j - \alpha \nabla_k v_j.
\]

Taking the skew-symmetric part of this equation with respect to \(k\) and \(j\), and substituting again \((2.6)\) and \((3.2)\), we also find
\[(h_{ks}k_{jl}-h_{js}k_{kl})f^{st}= (\nabla_k \beta + 3 \alpha l_k)u - (\nabla_j \beta + 3 \alpha l_j)u_k \]
\[- (\nabla_k \alpha - 3 \beta l_k) v_j + (\nabla_j \alpha - 3 \beta l_j) v_k.\]

by virtue of (2.2), (2.4), (2.5) and (2.6).

Since
\[(h_{ks}k_{jl}-h_{js}k_{kl})f^{st}u^j=0\]
and
\[(h_{ks}k_{jl}-h_{js}k_{kl})f^{st}v^j=0,\]
from the above relations, we can verify
\[(h_{ks}h_{jl}-h_{js}h_{kl})f^{st}=0.\]

Transvecting this equation with \(f^j_i\), we have
\[(3.6) \ h_{ki}k^j_j + h_{ji}k^i_k=0\]
by using of (2.5) and (2.6).

Comparing (3.6) with (3.5), we find
\[(3.7) \ h_{ks}h_{jl}f^{st}+ \lambda h_{ki}k^i_i=0.\]

Similarly, taking the covariant differentiation of the last equation of (2.6), we obtain
\[
(\nabla_k k_{jl})v^j + k_{ji}\nabla_k v^j \]
\[= -(\nabla_k \alpha)u_j - (\nabla_k \beta)v_j - \alpha \nabla_k u_j - \beta \nabla_k v_j.\]

Taking the skew-symmetric part of this relation with respect to \(k\) and \(j\), and substituting (2.6) and (3.2), we get
\[
2k_{ks}h_{jl}f^{st}+ \lambda (k^j_j h_{tk} - h^j_j k_{tk}) \]
\[= -(\nabla_k \alpha - 3 \beta l_k)u_j + (\nabla_j \alpha - 3 \beta l_j)u_k \]
\[- (\nabla_k \beta + 3 \alpha l_k)v_j + (\nabla_j \beta + 3 \alpha l_j)v_k.\]

by virtue of (2.2), (2.4), (2.5) and (2.6).

Comparing this equation with (3.4) and taking account of (3.5) and (3.6), we also get
\[(3.8) \ k_{ks}k_{jl}f^{st}+ \lambda h^i_i k_{ij}=0.\]

From (3.7) and (3.8), we can easily see that
\[(3.9) \ h_{ki}h^i_j = k_{ki}k^i_j.\]

On the other hand, taking the covariant differentiation of (2.5) and taking account of (2.2), (2.4), (2.5) and (2.6), we have
On anti-commute (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an even dimensional Euclidean space

\begin{equation}
R' = -4(\alpha^2 + \beta^2)
\end{equation}

and

\begin{equation}
R'_{ji} = R = \frac{R}{2} u^i, \quad R'_{ji} v^i = \frac{R}{2} v_j
\end{equation}

by virtue of (3.1).

Moreover, transvecting (3.7) with \(f^i_j \) and using of (2.2), (2.4), (2.5) and (2.6), we get

\begin{equation}
R'_{ji} = \frac{R}{2} (u^j u_i + v^j v_i) + R_{ij} f^s_j f^t_i.
\end{equation}

Thus we have

PROPOSITION 3.1. Let the submanifold \(M \) of codimension 2 of a \((2n+2)\)-dimensional Euclidean space be such that \(H \) and \(K \) anti-commute with \(f \), where \(H \) and \(K \) are Weingarten maps with respect to the normals \(C \) and \(D \) respectively. If \(\lambda \) is constant different from 0 and 1, then the relation

\[R'_{ji} f^i_j + f^i_j R'_{ji} = 0, \]

that is, Ricci tensor \(R \) of \(M \) anti-commute with \(f \) on \(M \).

From (3.12), we can see that

\[R'_{ks} R'_{ji} = \frac{R}{2} R'_{kj} \]

by virtue of (3.9), (3.10) and (3.11).

Thus the only eigenvalue of the tensor \(R'_{j} \) is \(\frac{R}{2} \) or 0. We denote the eigenspaces corresponding to the eigenvalues \(\frac{R}{2} \) and 0 by \(V_{\frac{R}{2}} \) and \(V_0 \) respectively. Since the multiplicity of \(\frac{R}{2} \) is 2, \(V_{\frac{R}{2}} \) at \(x \) and \(V_0 \) at \(x \), \(X \equiv M \), define respectively 2-and \((2n-2)\)-dimensional distributions \(V_{\frac{R}{2}} \) and \(V_0 \) over \(M \). They are mutually orthogonal and their Whitney sum is \(T(M) \).

Now, we assume that

\begin{equation}
\nabla_k R_{ji} = 0,
\end{equation}

(that is, Ricci tensor is parallel)

on \(M \).

Then \(R \) is constant on \(M \).

Let \(p^h \) and \(q^h \) be two arbitrary eigenvectors of \(R'_{j} \) with constant eigenvalue \(\frac{R}{2} \neq 0 \), then we have
\[(3.14) \quad R^i_j p^j = \frac{R}{2} p^i, \quad R^i_j q^i = \frac{R}{2} q^i, \]

from which

\[R^h_i \nabla p^i = \frac{R}{2} \nabla p^i, \]
\[R^h_i \nabla q^i = \frac{R}{2} \nabla q^i. \]

Thus

\[R^h_i (p^i \nabla q^i - q^i \nabla p^i) = \frac{R}{2} (p^i \nabla q^i - q^i \nabla p^i) \]

that is, if \(p^h\) and \(q^h\) belong to \(V_{\frac{R}{2}}\), then \([p, q]^h\) also belong to \(V_{\frac{R}{2}}\). Consequently the distribution \(V_{\frac{R}{2}}\) is integrable.

Similarly we can prove that the distribution \(V_0\) is also integrable.

Differentiating the first equation of (3.14) covariantly, we get

\[R^h_i \nabla p^h = \frac{R}{2} \nabla p^i, \]

from which

\[R^h_i \nabla p^h - R_j^i \nabla p^h = \frac{R}{2} (\nabla p^h - \nabla p^i). \]

Transvecting this equation with \(q^i\) and using of (3.14), we obtain

\[R^h_i (q^i \nabla p^h) - \frac{R}{2} q^i \nabla p^i = \frac{R}{2} q^i (\nabla p^i - \nabla p^i), \]

from which

\[R^i_j (q^i \nabla p^i) = \frac{R}{2} (q^i \nabla p^i), \]

or

\[R^i_j (q^i \nabla p^h) = \frac{R}{2} (q^i \nabla p^h), \]

which shows that if \(p^h\) and \(q^h\) are two arbitrary vectors belonging to the distribution \(V_{\frac{R}{2}}\), then \(q^i \nabla p^i\) also belongs to the distribution \(V_{\frac{R}{2}}\). Thus each integral manifold of \(V_{\frac{R}{2}}\) is totally geodesic in \(M\).

Similarly we can verify that each integral manifold of \(V_0\) is totally geodesic in \(M\).

Moreover, if \(p^i\) and \(w^i\) belong respectively to \(V_{\frac{R}{2}}\) and \(V_0\), we have

\[0 = (w^i \nabla_i R^h_i P^i = w^i \nabla_i (R^h_i P^i) - R^h_i w^i \nabla_i P^i \]
\[= -R^h_i w^i \nabla_i P^i + \frac{R}{2} w^i \nabla_i P^h \]

and
On anti-commute \((f, g, u, v, \lambda)\)-structures on submanifolds of codimension 2 in an even dimensional Euclidean space.

\[
0 = (P^i_i R^h_i) w^i = P^i_i (R^h_i w^i) - R^h_i P^i_i w^i = -R^h_i P^i_i w^i,
\]

that is,

\[
0 = \frac{R}{2} (w^i P^h_i) - \frac{R}{2} (w^i P^h_i) = \frac{R}{2} (w^i P^h_i)_0,
\]

and

\[
0 = \frac{R}{2} (P^i_i w^h_i) = \frac{R}{2} (P^i_i w^h_i)_0.
\]

vector of the form \(q^h\) being written as \((q^h)_0\), where \((q^h)_0\) respectively denote the \(V^R_2\) and \(V^0_0\) components of \(q^h\).

Consequently we have

\[(w^i P^h_i)_0 = 0, \text{ that is, } w^i P^h_i \in V^R_2\]

and

\[(P^i_i w^h_i)_0 = 0, \text{ that is, } P^i_i w^h_i \in V^0_0.\]

Thus the distributions \(V^R_2\) and \(V^0_0\) are parallel. So, using de Rham's decomposition theorem, we have

Theorem 3.2. Let \(M\) be a complete submanifold of codimension 2 in a \((2n+2)\)-dimensional Euclidean space such that \(H\) and \(K\) anti-commute with \(f\), where \(H\) and \(K\) are Weingarten maps with respect to the normals \(C\) and \(D\) respectively. If \(\lambda\) is constant different from 0 and 1 and

\[\nabla_k R_{ji} = 0,\]

(that is, Ricci tensor is parallel)
on \(M\), then \(M\) is the product of \(M^2 \times E^{2n-2}\) of a two-dimensional manifold \(M^2\) and a \((2n-2)\)-dimensional Euclidean space \(E^{2n-2}\).

§ 4. Submanifolds of codimension 2 in a locally Fubinian manifold.

A Kählerian manifold is called a locally Fubinian manifold if the holomorphic sectional curvature at every point is independent of the holomorphic section at the point. In this case, its curvature tensor is given by

\[R^h_{\mu\nu\lambda\kappa} = \kappa (G^h_{\nu\kappa} G^\mu\lambda - G^h_{\nu\lambda} G^\mu\kappa + F^h_{\nu\kappa} F^\mu\lambda - F^h_{\nu\kappa} F^\mu\lambda - 2 F^h_{\nu\mu} F^\lambda\kappa),\]
κ being a constant [1].

Substituting this equation into the equations of Gauss, Codazzi, Ricci respectively:

$$R_{\nu\mu\lambda\kappa}B^\nu_jB^\mu_iB^\lambda_kB^\kappa_h = R_{\kappa jhi}h_{kj} + h_{ij}h_{hi} - h_{khi}h_{ji} + k_{kji}h_{hi},$$

$$R_{\nu\mu\lambda\kappa}B^\nu_jB^\mu_iB^\lambda_c = \nabla_k h_{ji} - \nabla_j h_{ki} - l_k h_{ji} + l_j h_{ki},$$

$$R_{\nu\mu\lambda\kappa}B^\nu_jB^\mu_iB^\lambda_D = \nabla_k h_{ji} - \nabla_j h_{ki} - l_k h_{ji} + l_j h_{ki},$$

we find [3]

(4.1) $\nabla_k h_{ji} - \nabla_j h_{ki} - l_k h_{ji} + l_j h_{ki} = \kappa (u_k f_{ji} - u_j f_{kj}),$

(4.2) $\nabla_k h_{ji} - \nabla_j h_{ki} + l_k h_{ji} - l_j h_{ki} = \kappa (v_k f_{ji} - v_j f_{kj} - 2v_i f_{ki}),$

(4.3) $\nabla_t h_{ji} + h_{kt} h_{ji} - h_{jt} h_{ki} = \kappa (v_k u_j - v_j u_k - 2\lambda f_{kj}).$

Taking the similar method to the first equation of (2.6) as in the previous section and using of (2.2), (2.4), (2.5) and (4.1), we find

(4.4) $2h_{kt} h_{ji} f_{ti} + \lambda (h_{kt} h_{ji} - h_{ji} h_{kt}) + \kappa \{\lambda (u_k v_j - u_j v_k) - 2(1 - \lambda^2) f_{kj}\}$

$$= (\nabla_k \alpha - 3\beta f_k) u_j - (\nabla_j \alpha - 3\beta f_j) u_k + (\nabla_k \beta + 3\alpha l_k) v_j - (\nabla_j \beta + 3\alpha l_j) v_k.$$

Transvecting (4.4) with u' and taking account of (2.6), we have

(4.5) $\nabla_k \alpha - 3\beta f_k = \frac{1}{1 - \lambda^2} \{u' (\nabla_i \alpha - 3\beta l_i) u_k + u' (\nabla_i \beta + 3\alpha l_i) u_k \}$

Substituting (4.5) into (4.4) and transvecting with v', we get

(4.6) $\nabla_k \beta + 3\alpha l_k = \frac{1}{1 - \lambda^2} \{v' (\nabla_i \beta + 3\alpha l_i) v_k + v' (\nabla_i \beta + 3\alpha l_i) v_k \}.$

From (4.5) and (4.6), we can see

(4.7) $2h_{kt} h_{ji} f_{ti} + \lambda (h_{kt} h_{ji} - h_{ji} h_{kt}) + \kappa \{\lambda (u_k v_j - u_j v_k) - 2(1 - \lambda^2) f_{kj}\}$

$$= 3\lambda (u_k v_j - v_k u_j) = (\nabla_k \alpha - 3\beta f_k) u_j - (\nabla_j \alpha - 3\beta f_j) u_k + (\nabla_k \beta + 3\alpha l_k) v_j - (\nabla_j \beta + 3\alpha l_j) v_k.$$

Taking also the similar way to the last equation of (2.6) as in the previous section and taking account of (2.2), (2.4), (2.5) and (4.2), we obtain

(4.8) $2h_{kt} h_{ji} f_{ti} + \lambda (h_{kt} h_{ji} - h_{ji} h_{kt}) + \kappa \{\lambda (u_k v_j - u_j v_k) - 2(1 - \lambda^2) f_{kj}\}$

$$= -3\lambda (u_k v_j - u_j v_k)$$

by virtue of (4.7).

From (4.8), we can see
On anti-commute \((f, g, u, v, \lambda) \)-structures on submanifolds of codimension 2 in an even dimensional Euclidean space.

\[0 = 6\lambda(1 - \lambda^2) \kappa v^h \]

by virtue of (2.6). It means that \(\kappa = 0 \) on \(M \).

Thus we have

Theorem 4.1. Let a submanifold \(M \) of codimension 2 of a locally Fubinian manifold \(\tilde{M} \) be such that \(H \) and \(K \) anti-commute with \(f \), with respect to the normals \(C \) and \(D \) respectively. If \(\lambda \) is constant different from 0 and 1, then there is no such a \(M \) unless \(\tilde{M} \) is locally Euclidean.

Kyung-pook University

Bibliography

