최근에 이룩된 가금 영양학 발전상

1. 서 토

최근 수년간 가금 영양학 분야에서는 이미 화기 때문에 연구된 사실을 재정비하는데 많은 노력을 집중하여 왔다. 이러한 연구는 상당히 유익한 것도 있었으나 부적합한 연구내용은 나온 것이 없다. 오늘 본인은 5개 분야에 대한 최근 연구 결과 및 업계에 대해 설명하고자 한다. 이중 3개는 보로일러 영양에 관한 것이며, 한편은 식량재, 또 다른 하나는 육종 중개 사양문제에 관한 것이다. 먼저 병은 탐에 대한 이야기를 하고 다음에 묵탁에 대한 것을 논의해 보자 한다.

2. 남 결

지난 10년간 채택기에 있어서 납작을 개량하기 위한 많은 연구가 행해졌다. 특히 영해지방의 곡은 사양에서의 이 문제와 심각하게 내몰리던 것이다. 이 연구의 첫 번째 개가는 1960년 아이다호 시험장의 피터슨이 영해지방에서 납작을 생산하자면 적어도 3～4%의 농축을 극히해야 한다고 보고한데서 비롯된다. 그러나 이 정도의 농축공급으로도 곡은 사양에 있어서는 연남을 생산하기 때문에 문제가 좀 더 심각하게 된 것이다.

일부 영양학자들은 연란의 발생이 자동배합기에 있어서 아주 과도하게 분리되어 나가는 때문이 아닌가 하는 점을 제기하였고 그래서 미국 캐리나 사건장의 찰스바켓을 위시한 연구가 들이 자동배합기에 있어서 어떤 농축급원 원료가 다른 농축급원 원료에 비해 심하게 분리되어 나가는 것이 아닌가 하는 시험을 시행한 결과 결과가 농축 박약는 식과가루에 비하여 단위량당 부식가 작기 때문에 쉽게 분리되지 않고 자동배합기에 전혀에 고무고루 농축이 합유되다고 보고하였다. 그러나 농축밀가루들 쌍층 농축의 임가분리지를 방지하여도 납작이 좋지 못한 양을 생산하는 경우가 있어 문제가 되고 있다.

1971년 플로리다 사이언스 7월호에 코넬대학의 스코트박사에 의하여 발표된 납작일 양상 방법을 살펴보면 이들은 잘 분해된 식과가루와 농업에 의해 공급되는 모든 농축의 영양을 비교하였는데 표 1에 그 결과가 있다.

<table>
<thead>
<tr>
<th>표 1.</th>
<th>파 각 력</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>농축급원</td>
</tr>
<tr>
<td>식과석</td>
<td>농축밀가루</td>
</tr>
<tr>
<td>식과석</td>
<td>100%</td>
</tr>
<tr>
<td>농축밀가루</td>
<td>33%</td>
</tr>
</tbody>
</table>

위표에서 보는 바와 같이 농축밀가루의 3분의 2를 농축밀가루로 주었을 때 3개월간에 가서 파각
3. 부로일러 종계사상문제

다음에 부로일러를 종계 사상문제를 논의하고자 한다.

지난 20년간 이 문제에 대하여 많은 연구가 있었는데 결론적으로는 종계의 능력을 향상시켜야 한다는 것이다. 성장률을 제한하기 위해서는 식량을 저장시키야 한다는 것이다. 식량을 저장시키는 데 있어 방법은 비교적 효율적인 사료양을 제한함으로서 보통 섭취량의 70%정도를 섭취토록 하는 것이며 이 방법이 상당히 효과가 좋으나 다시 사료급여량을 달아야 하는 불편한게 퀘스트 대학의 코우치박사들은 급여사료중의 실패율을 높임으로써 납이 마음을 사료를 먹어도 에너지 요구량을 충족할 수 있도록 하여 시중률을 줄이고 성장성을 저장시킬 수 있다고 하였다.

그러나 이 방법은 종계를 육성하는데 필요한 사료량이 40%가 줄어들므로 생산비를 증가되어 양계업자들이 잘 실시할 수 없는 결함이 있다. 그러나 이런 방법에서는 왜곡과 같은 신사료원이 있기 때문에 이 방법을 잘 쓰는 곳도 있다.

1960년대에 퀘스트 대학의 연구가들이 9
내지 10% 정도의 저단백질 사료를 급여함에 성장 숙을 지연시킬 수 있다고 보고하였고 코우치 박사의 실전박사들은 저 백정이 약간 수정하여 단백질수준은 정상적으로 유지하게 하고 라이선 수준을 감소시켜서 성장숙을 지연시키며 하였다.

비슷한 대학의 코우치 박사들은 유사수 발효 박시 많이 배합함으로써 라이선 수준이 아주 낮은 사료를 쉽게 만들는데 성공하였다. 또 적절한 방법도 연구되었는데 이는 일정량의 사료를 납에 하루 간 급여토록 하며 건너는 납은 사료를 전체 주지 않거나 아주 소량만 준다. 이것은 납이 보통 납 급여하는 방법의 약 1/3에 해당한다. 즉 자유식이었을 때의 75% 정도를 섭취하는 것을 의미하는 것이다.

이어서 퀘스트 실험에서 식사학생격 급식법, 저단백질사료 급여법, 저리선사료 급여법의 비교시험을 소개하면 다음과 같다. 1회시험은 1968년 12월 2일, 2회시험은 1969년 1월 13일에 시작하였는데 2회시험은 1회시험보다 5주 높게 시작하였으므로 1회시험의 탑들은 상당히 청소한 결과에 시험을 실시하였기에 때문에 2회에서 얻은 결과와는 약간 다르게 나온 것 같다. 이 시험에 사용한 초생추사료의 배합율은 다음과 같다.

<table>
<thead>
<tr>
<th>사료</th>
<th>백합 융</th>
<th>1회시험</th>
</tr>
</thead>
<tbody>
<tr>
<td>외제 육수수</td>
<td>66.4%</td>
<td>27.8</td>
</tr>
<tr>
<td>대두粕 (50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>알당리 분말 (20%)</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>셰어가루</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>인산석화(물소제도)</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>소 간</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>비량 성분</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>DDGS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

이 사료는 단백질이 22%, 파운드당 생산력이 저자가 938kcal (ME 약 2900kcal/kg)이며 저리 선구의 탑들은 이 사료를 7주동안, 다른 2개 구는 8주까지 급여하였다. 처음 7주동안은 모두 같은 제식에서 사육하였으나 7주째가서 20수 식의 탑들은 각각 3개 계이지에 임의로 배치하
있다. 각 처리당 12개의 케이지를 반복수로 하였다. 이 시험에 쓰인 사료의 범위는 표 3과 같다.

표 3. 사료 배합표

<table>
<thead>
<tr>
<th>사료 명</th>
<th>용성사료</th>
<th>치킨백질사료</th>
<th>치타이신사료</th>
</tr>
</thead>
<tbody>
<tr>
<td>황색유수수</td>
<td>76.42%</td>
<td>94.15%</td>
<td>62.10%</td>
</tr>
<tr>
<td>매우까 (50%)</td>
<td>17.20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>알괄파문말 (20%)</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>섬유가루</td>
<td>0.48</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>인산 석회 (물소저해)</td>
<td>2.00</td>
<td>1.45</td>
<td>1.60</td>
</tr>
<tr>
<td>소 모 (유소 함유)</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>미糠 성분</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>DDGS</td>
<td>—</td>
<td>—</td>
<td>30.00</td>
</tr>
</tbody>
</table>

육성사료는 단백질 16%, 지방도당 생산에너지가 933kcal이며 8주에서 12주까지 급여하였다. 12주이후에는 겉길שק식구는 1주에서 2주간 실시하고 저ائن백질구는 8주에서 2주간 급여하였는데 보통 저ائن백질사는 22주에서 24주까지 급여하는 것으로 되어있다. 그러나 본시험에서는 저라이신사료와 비교하는 것이 더 관심있는 것이라고 20주까지 급여하였다. 저라이신사료는 코우치박사주에 포함된 것과 같은 배합의 사료 들이며 7주에서 20주까지 급여하였다. 20주경에 가서 저ائن백질 저라이신구의 탐들은 표 4에서 보는바와 같은 종계사료로 변경하였고 겉길 השק식 구의 배합은 24주형에 가서 변경하였다.

표 5. 채종 비교 (시험 1)

<table>
<thead>
<tr>
<th>주 형</th>
<th>채종 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>768</td>
</tr>
<tr>
<td>11</td>
<td>1,601</td>
</tr>
<tr>
<td>15</td>
<td>1,666</td>
</tr>
<tr>
<td>20</td>
<td>2,025</td>
</tr>
<tr>
<td>24</td>
<td>2,252</td>
</tr>
</tbody>
</table>

작은 것은 주목할 만한 사실이다. 즉 11주형에는 겉길 השק식구의 탐들이 아직 많이 성취하고 있는 것을 표시하는 것이다. 15주형에는 겉길 השק식구 및 저ائن백질구는 채종이 비슷하나 저라이신구는 좀 높게 나타났다. 20주형에서는 저라이신구가 가장 크고 다음이 겉길שק식구이며 저ائن백질구가 가장 작다. 이 자료에 저ائن백질 및 저라이신구의 탐들은 종계사료로 바꾸며 24주형에서는 이 탐들이 겉길 השק식구의 탐보다 채종이 더 많이 나왔다. 이점이 상당히 중요한 점이니 명심하기 바란다. 시험 2에서 얻어진 성적은 표 6에 나와있다.

표 6. 채 종 (시험 2)

<table>
<thead>
<tr>
<th>주 형</th>
<th>채 종 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>903</td>
</tr>
<tr>
<td>11</td>
<td>1,716</td>
</tr>
<tr>
<td>15</td>
<td>1,798</td>
</tr>
<tr>
<td>24</td>
<td>2,016</td>
</tr>
<tr>
<td>50</td>
<td>3,473</td>
</tr>
</tbody>
</table>

이 시험에서는 대조구를 설정하여 끔찍한 자요로 섭취시켰을 때는 채종이 어떻게 증가하는 가를 아울러 조사하였다. 이 표에서도 11주형에 저ائن백질 및 저라이신구 탐의 체중이 현저하게 감소하였으나 15주형에는 겉길שק식구 및 저ائن백질, 저라이신구의 체중은 유사하였으나 대조구의 탐의 체중은 현저히 유의하였다. 24주형에서는 시험 1의 결과와 비슷하게 나왔는데 저라이신구, 저ائن백질구, 겉길השק식구순으로 채종이 적었다.

그러나 50주령에 가서는 탄의 채중은 각 구 모두 비슷하였다.

표 7에서는 시험 I와 시험 II에서의 24주령시 채중을 비교하고자 한다.

<table>
<thead>
<tr>
<th>시험</th>
<th>채중 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>계열잡식구</td>
</tr>
<tr>
<td>I</td>
<td>2,525</td>
</tr>
<tr>
<td>II</td>
<td>2,016</td>
</tr>
</tbody>
</table>

만약도 연급한 바와 같이 24주령시 채중은 저타이신구, 저탑백질구, 계열잡식구의 순인데 8주에서 2주까지 수량 섭취하는 사료량을 보면 표 8과 같다.

<table>
<thead>
<tr>
<th>시험</th>
<th>사료섭취량 (파운드)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>계열잡식구</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
</tr>
</tbody>
</table>

사료섭취량은 저타이신구가 가장 많았고 다음 이 저탑백질구 그 다음이 계열잡식구였다. 즉 사료섭취량은 채중에 비례하고 있는 것 같다. 이 시험에서 지멘시의 성장기를 결정할로 하였으며 저타이신구 및 저탑백질구의 탐들이 그들 에너지 요구량을 충족시킬 수 있도록 자유서식되었기 때문에 계열잡식구보다 더 많은 사료를 섭취하게 되었다. 계열잡식구의 탐은 점일 급여량에 기초를 두고 급여량을 제한하였다. 성장기 간중의 폐사율을 보면 표 9와 같다.

<table>
<thead>
<tr>
<th>시험</th>
<th>폐사율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>계열잡식구</td>
</tr>
<tr>
<td></td>
<td>34.4</td>
</tr>
<tr>
<td>II</td>
<td>28.8</td>
</tr>
</tbody>
</table>

폐사율은 시험 I에서 저탑백질 저타이신구에 비해 계열잡식구가 5%가량 높았으나 통계적인 유의성은 없었다.

시험 II에서도 계열잡식구에서 특별히 폐사율이 높았는데 이는 탐력 때문인 것으로 생각된다.

다음표는 25% 및 50%의 산란율을 나타낸 데의 일정이다.

<table>
<thead>
<tr>
<th>시험</th>
<th>계열잡식구</th>
<th>저탑백질구</th>
<th>저타이신구</th>
<th>대조구</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180</td>
<td>176</td>
<td>167</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>194</td>
<td>191</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>206</td>
<td>206</td>
<td>189</td>
</tr>
</tbody>
</table>

2회의 시험에 걸쳐 저타이신구의 탐들이 초산 일정이 가장 빨랐고 시험 I에서는 저탑백질구 다음이고, 계열잡식구는 성장속이 매우 저린되었다.

시험 II에서는 별차이를 보이지 않았다. 시험기간 중 산란율은 표 11에 나타난 바와 같다.

<table>
<thead>
<tr>
<th>시험</th>
<th>계열잡식구</th>
<th>저탑백질구</th>
<th>저타이신구</th>
<th>대조구</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54.1</td>
<td>49.4</td>
<td>50.0</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>47.6</td>
<td>43.2</td>
<td>44.8</td>
<td>44.0</td>
</tr>
</tbody>
</table>

시험 II에서 계열잡식구의 산란율이 제일 높았다. 저탑백질 및 저타이신구는 비슷하였는데 계열잡식구의 차이는 뚜렷한 것 같았다. 이러한 차이는 계열잡식구의 탐들은 24주령까지 실제로 하였는데 비해 저탑백질 및 저타이신구는 20주령까지 미치지 않았기 때문인 것으로 보인다. 20주령에 종계사료를 급여하였음으로 20주에서 24주령까지 상당량의 종계사료를 섭취함으로써 산란율까지 채중이 크게 증가한 것 같다.

표 12는 수정율에 대한 자료이다.

<table>
<thead>
<tr>
<th>시험</th>
<th>계열잡식구</th>
<th>저탑백질구</th>
<th>저타이신구</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>75.9</td>
<td>71.7</td>
<td>84.4</td>
</tr>
<tr>
<td>II</td>
<td>78.7</td>
<td>77.1</td>
<td>75.9</td>
</tr>
</tbody>
</table>

— 58 —
수정율에 대해서는 각 구간에 큰 차가 없으며 시험 I에서 저단백질구와 저라이는 식이에 알 유의차이가 있었다. 각각보다 시험 I에서는 11개의 수정율, 시험 II에서는 6개의 수정율을 각각 부화하였다.

수정난의 부화율을 보면 표 13과 같다.

<table>
<thead>
<tr>
<th>표 13</th>
<th>수정된 부화율 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>사림</td>
</tr>
<tr>
<td>I</td>
<td>85.4</td>
</tr>
<tr>
<td>II</td>
<td>87.9</td>
</tr>
</tbody>
</table>

위표를 보면 부화율도 각구간 유의차가 없었음을 알 수 있다. 다음 표 14에서는 평균 난중을 표시하였다.

<table>
<thead>
<tr>
<th>표 14</th>
<th>난중(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>사림</td>
</tr>
<tr>
<td>I</td>
<td>62.0</td>
</tr>
<tr>
<td>II</td>
<td>62.0</td>
</tr>
</tbody>
</table>

시험 I에서의 평균난중은 각구간 비슷하였으며 시험 II에서는 난중은 2.3, 4개월만에 조사하였음으로 대조구의 난중이 시험 I에서 보다 상당히 무거게 나온것 같다. 한결의 계산을 생각하는데 소비된 사료량이 표 15에 나와있다.

<table>
<thead>
<tr>
<th>표 15</th>
<th>달걀 열두개 생산에 필요한 사료량 (파운드)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>사림</td>
</tr>
<tr>
<td>I</td>
<td>7.8</td>
</tr>
</tbody>
</table>

사료소비량에 있어서 각구간 유의차는 없으나 갑영공식구의 탐들이 더 적은량의 사료를 요구하고 있는 것 같다. 이것은 이들 탐들의 산란율이 상당히 높기 때문인 것으로 보인다.

요약해보면 탐의 성장속도 저변시키기 위하여 총 사료섭취량의 제한, 고 섬유소사료의 사용, 저단백질 및 저라이신사료, 갑영공식Feed 등 5가지 방법이 쓰여지고 있다. 이 모든 방법이 어떤 특징점에서는 효과적인 것이 증명되고 있다. 루리타시험의 최근 시험결과로는 12주에서 24주까지 갑영공식한 탐들이 저 라이신을 7주에서 20주까지 저단백질을 8주에서 20주까지 급여한 탐들보다 산란율이 약간 높다고 보고하고 있다. 이러한 약간의 차이는 저단백질 및 저라이신사료를 먹은 탐들 20주에서 24주간에 너무 많은 중세로 마다룬 것으로 보인다. 그러므로 이러한 방법을 사용하여도 탐들 20주 이상 육성사료를 넣어야 할 것이다. 성장속도 저변시키는에는 상기 방법들이 효과적이나 탐종류, 관리 및 농장의 환경을 고려하여 적절한 방법을 탐하여야 할 것이다.

4. 무기황산염에 의한 메치오면 매치

다음은 무기황산염 사망에 대한 최근의 연구결과를 보고하기로 한다. 가장 흥미있는 것은 메치오면이나 고투황산암산물 무기황산염으로 대체하고 있다는 것이다. 탐에 무기황산염이 필요하다는 것은 1955년 라지일 및 곽은상가 황산을 함유하지 않은 시스템황산이 낮은 저유산성사료에 0.5%의 황산나트륨을 첨가하였을 때 성장촉진 효과가 있다고 발표한 배브리아 푸르리타 대학의 로스와 함께 최근의 연구에서 부로일서 사료에 0.83%의 함유황산암산물 및 톱색 테그혼 습 탐에서 1.23%의 함유황산암산물을 함유하고 있을 때 무기황산염의 탐에 대한 효과를 확인하였다. 이러한 자료는 이 탐들이 함유황산암산이 무기황산염의 콩급제를 이용할 수 없었거나 아니면 이러한 정산이 무기황산염으로 알려졌던가를 말해주고 있다. 그러므로 본인이 오는 실험보고서 하는 실험은 표 16에서와 같이 보통 사료로서 만들어진 배합사료에 있어서 무기황산염이나 무기황산염에 어떤 반응을 나타내는가를 보기 위한 것입니다.

이 사료는 메치오면 및 황산암산물이 적게 들

<table>
<thead>
<tr>
<th>표 16</th>
<th>사료 배합표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>황산나트륨</td>
<td>58.0</td>
</tr>
<tr>
<td>태투구(50%)</td>
<td>30.6</td>
</tr>
<tr>
<td>동물성 지방</td>
<td>6.0</td>
</tr>
<tr>
<td>알탈프와 진초분말(20%)</td>
<td>2.5</td>
</tr>
<tr>
<td>석회가루</td>
<td>0.9</td>
</tr>
<tr>
<td>인산황소</td>
<td>1.1</td>
</tr>
<tr>
<td>소금(축소 함유)</td>
<td>0.4</td>
</tr>
<tr>
<td>비황산분</td>
<td>0.5</td>
</tr>
</tbody>
</table>
이었다. 정사에서 8주령까지 3가지의 시료가 설치되었으며 그 결과는 표 17에 나타나 있다.

<table>
<thead>
<tr>
<th>표 17</th>
<th>중세량 및 사료요구량</th>
</tr>
</thead>
<tbody>
<tr>
<td>치료</td>
<td>저중</td>
</tr>
<tr>
<td>대조군</td>
<td>1,356 a</td>
</tr>
<tr>
<td>+0.075% 메치오닌</td>
<td>1,423 b</td>
</tr>
<tr>
<td>+0.5% Na₂SO₄</td>
<td>1,429 b</td>
</tr>
</tbody>
</table>

이 시험에서 각 처리량 10수의 알주령 부로일부터 방아리기를 배치하였다. 0.075%의 메치오닌을 첨가한 경우는 두저에서 중세효과를 나타내었으며 0.5%의 Na₂SO₄를 첨가한 구도 같은 효과를 가져갔다. 또한 이들은 첨가한場合사고 사료효율도 개선되었다.

표 18에서는 2회에 서서의 중세량이 표시되어 있다.

<table>
<thead>
<tr>
<th>표 18</th>
<th>중세량 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>메치오닌 (%)</td>
<td>Na₂SO₄ (%)</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1,185</td>
</tr>
<tr>
<td>0.05</td>
<td>1,245</td>
</tr>
<tr>
<td>0.1</td>
<td>1,279</td>
</tr>
<tr>
<td>0.15</td>
<td>1,300</td>
</tr>
<tr>
<td>평균</td>
<td>1,259*</td>
</tr>
</tbody>
</table>

이 시험은 메치오닌 수준이 0, 0.05, 0.1, 0.15의 4개수준, Na₂SO₄ 수준은 4개수준으로 한 요인시험으로 Na₂SO₄가 메치오닌 요구량을 대치할 수 있으나 보다 보기 위해 것이다. 4개의 채이지에 10수의 알주령률들을 각각 수용하였다.

두개의 예외는 있었지만 기본사료에 0.1시에 0.5%의 Na₂SO₄를 첨가한 제 0.15%의 메치오닌을 첨가한 경우에도 중세효과가 있었다. 또한 사료에 메치오닌을 첨가한 경우로도 중세효과가 현저하게 확상되었다. 즉 3가지 수준의 Na₂SO₄ 첨가가 모두 유의적인 중세효과를 나타내었다. 표 19에서 사료효율을 볼 수 있다.

<table>
<thead>
<tr>
<th>표 19</th>
<th>사료효율</th>
</tr>
</thead>
<tbody>
<tr>
<td>메치오닌 (%)</td>
<td>Na₂SO₄ (%)</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>2.40</td>
</tr>
<tr>
<td>0.05</td>
<td>2.20</td>
</tr>
<tr>
<td>0.1</td>
<td>2.14</td>
</tr>
<tr>
<td>0.15</td>
<td>2.19</td>
</tr>
<tr>
<td>평균</td>
<td>2.23*</td>
</tr>
</tbody>
</table>

사료효율은 메치오닌 첨가수준을 높일수록 개선되었으나 Na₂SO₄의 첨가에 의해서는 개선되지 못하였다. 3회시험의 결과를 보면 표 20과 같다.

<table>
<thead>
<tr>
<th>표 20</th>
<th>중세량 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>메치오닌 (%)</td>
<td>Na₂SO₄ (%)</td>
</tr>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>1,438</td>
</tr>
<tr>
<td>0.05</td>
<td>1,518</td>
</tr>
<tr>
<td>0.1</td>
<td>1,581</td>
</tr>
<tr>
<td>평균</td>
<td>1,512*</td>
</tr>
</tbody>
</table>

이는 3×3 요인시험으로 각 처리량 18수의 숫자 및 18수의 알주령을 8개지지로 배치하였다. 이 시험에서 Na₂SO₄의 수준을 더 늘추었는데도 이는 시험에서 Na₂SO₄가 첨가수준에서 중세효과가 컸기 때문이다. 최대성장군은 Na₂SO₄를 0.1% 첨가하였을 때이며 이때도 메치오닌 첨가에 의하여 현저한 효과가 있었다.

사료효율은 표 21에서 보는 바와 같다. 사료효율은 메치오닌을 첨가한 구에 있어서도

<table>
<thead>
<tr>
<th>표 21</th>
<th>사료효율</th>
</tr>
</thead>
<tbody>
<tr>
<td>메치오닌 (%)</td>
<td>Na₂SO₄ (%)</td>
</tr>
<tr>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>0</td>
<td>2.40</td>
</tr>
<tr>
<td>0.05</td>
<td>2.30</td>
</tr>
<tr>
<td>0.10</td>
<td>2.20</td>
</tr>
<tr>
<td>평균</td>
<td>2.30*</td>
</tr>
</tbody>
</table>

가장도 Na₂SO₄를 첨가함으로써 개선되었는데 이는 시험 2와는 다른 결과를 나타내고 있다.
이것은 두 시험에서 각각 다른 제도의 탐을 공
시하였기 때문에 아난가 생각된다.
요약한다면 부로일탁용 품종을 보통 배합사료
로 사용할 때 황산염이 시스템으로 전환됨으로
배치오늘을 장약할 수 있다는 것을 말할 수 있음
것 같다. 고로, 탐은 유효요량이 탄화황아미노
산에 의하여 증가할 수 있다는 주장은 이러한
결과를 놓고 볼 때 탐하고 할 수 없는 것이고
만일 유량의 요구량이 탄화황아미노산의 상황
에 의해 증가いただける 이점용도이라고 남비적인
방법이다. 무기요양이 적사용에 중요한 것으로
많은 조직의 매사에 관하여의 비로어 사
료에 무기요양의 적절한 양을 공급함이 필요한
것이다. 이러한 연구결과로서 부로일식 사료에
황산염 혼합의 미량투기를 사용하던가 0.1%
의 Na₂SO₄를 첨가하는 것을 권장하는 바이다.

5. 바이오틴 요구량

최근 3~4년 동안에 상당히 큰 관심을 모았던
다른 한 연구분야는 바이오틴의 이용에 관한 문
제였다. 사료중에 바이오틴이 결핍되면 탑과 친
면조에서 작작증이 발생하는 사례는 이미 25
년 전부터 알려져 왔다. 그러나 일반 사료 중에
는 가금의 필요로 하는 충분한 바이오틴이 유류
되어 있다고 공신되어 왔다. 그런데 1967년 이
국의 어느 양계장에서 3주령의 친면조에 바이오
틴 결핍 유사증이 발생하였는데, 바이오틴 결
핍증이 있는 데 생각하면서도 그 증세가 너무
도 비슷하여 d-바이오틴을 수당 250mcg의
매우 1회 2주일간 주사하여 주었다. 그 결과는
도 회복되었던 것이다. 이 사례로 말하기나 미국
에서는 상당한 연구를 하게 되고 바이오틴의 유
효성을 주관한 연구를 해론하게 되었다. 위의
지원한 시험장의 천천석사가 바이오틴 요구량
을 보다 정확하게 결정하기 위하여 여력자로
구를 하였다. 그는 카테인과 체린을 주요 사
료로 하여 전 순수사료를 만들어 사용하였는데
그의 한 실험결과를 소개하면 표 22와 같다. 사
료당 2kg의 99mcg의 바이오틴이 유류되어 있는
무성가구 보다 천천히의 성장률이 더 좋았으며 바
이오틴 수준을 증가 시킬수록 성장 및 사료효율

<table>
<thead>
<tr>
<th>표 22</th>
<th>친면조의 바이오틴 요구량(실습 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>바이오틴 첨가량 (mg/kg)</td>
<td>바이오틴 첨가량 (mg/kg) 중 3주령 시 전 균발적 (g)</td>
</tr>
<tr>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>50</td>
<td>160</td>
</tr>
<tr>
<td>100</td>
<td>231</td>
</tr>
<tr>
<td>150</td>
<td>284</td>
</tr>
<tr>
<td>200</td>
<td>358</td>
</tr>
<tr>
<td>250</td>
<td>370</td>
</tr>
</tbody>
</table>

① 서로 다른 문헌을 기준으로 5%수준의 유의자가 일정함
이 개선된 것을 볼 수 있다. 이 실험이 그는 친
면조의 바이오틴 요구량을 사료당 231~248
mcg라고 결론하였다. 그런데 이 바이오틴의
사료중이 유류형이라면 친면조가 유류할 수 있는
상태의 것이라는 결과를 얻기 어렵다. 즉 실제
로는 일반사료 중에는 바이오틴의 생물적 유류
량과 영분혼합량이 필요하므로 식사 요구량
보다 많이 공급해야 한다는 것이다. 다른 연구
가들도 바이오틴의 효과를 실험시에는 서로 상
이한 결과를 보고하고 있다. 역사의 실험이에는
바이오틴이 유류되었으나 혹은 부족하였다고
한다. 바이오틴의 효과를 영양곤 미치지 않았다고
생산된 몇 가지 요인을 들이보면, ① 사료중에
함성물질의 첨가, ② 성장 및 자생, ③ 성장은
이 유전적 관계에 도달하여, ④ 장내 미생물의
유류 바이오틴에 대한 영향 특부 등이 있었던
장내 미생물의 바이오틴에 대한 영향 여부를
규명하기 위하여 부로일식 사료장에서는 부로일
식 사료중의 바이오틴과 유효성과의 상호관계를
연구하였다. 4주간의 실험 결과는 표 23에서 보
는 바와 같다.

<table>
<thead>
<tr>
<th>표 23</th>
<th>4주행성체 체중(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>유장 %</td>
<td>바이오틴 첨가량(mg/ton)</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>611</td>
</tr>
<tr>
<td>1.5</td>
<td>595</td>
</tr>
<tr>
<td>3.0</td>
<td>612</td>
</tr>
</tbody>
</table>

표에서 보는 바와 같이 유효는 0.1, 1.5 및 3.0%, 바이오틴은 0.1, 100, 200,mcg의 각 3개의 수준을 주었다. 유효이나 바이오틴중 어느 한 성분이 섭
가의지 않은 경우에는 다른 성분을 첨가하여도
별 효과가 없었다. 그러나 유장과 바이오피
g존한 경우에는 각자의 첨가중후에 따라 성장
효과도 증가한다고 있다. 즉 이 결과에서 미생물
이 어떤 조건하에서 더욱 바이오피에 대하여 경
향할 것이라는 가설을 실증할 수 있다. 이러한
결과, 어떤 미생물은 유장에서 나오는 유당과
바이오피를 이용하고 있으므로 이 두 가지 영양
소의 요구량이 증가될 것이다. 그러나 우리는
이 결과를 단정적으로 보지 않는다. 다만 바이
오피의 첨가에 대한 많은 연구를 필요로 한다는
점과 이는 가공영향에 대한 전전을 가져오리라
를 뿐이다.

6. 부로일러 착색에 관한 연구

다음에는 부로일러의 착색에 대하여 고찰해
보겠다. 주저하는 바와 같이 부로일러의 착색은
단 부산물이나 사탕수수, 곡류등을 사료로 이용
할 경우 중대한 문제로 된다. 왜냐하면 30여년동안
부로일러 착색에 관한 많은 연구를 하였다.
그러나 여전히 향상 문제점이 되어온 것은 적절
한 착색도 조절법이다. 각자의 실험에서 부로일
러의 피부색을 목적으로 비교 평가하는 방법을
보통 쓰고 있었다. 그러므로 실험실과의 표준
화된 방법에 어려워 색소 축출법을 개발하게 되
있다. 대개 야생으로 발바닥의 피부를 추출하
는데, 일정한 범위에서의 이 추출물의 흡광도나
광선 투과율을 발바닥에 대한 착색도 지수로 표
시하는 방법이다. 이 방법은 매우 적합적이며 정
확하다. 그러나 시간이 오래 걸리고 시료가 많이
차진 축적기구가 많이 소요 된다는 단점이 있다.

부로일러 생산에 있어서 과거에는 발바닥 피
부를 목축 또는 아세론 추출법으로 기산피부의
비용을 축정하였다. 우리는 이를 축정하는 "피
색산"의 적용도를 구명하려고 연구하여 좋다는
결론을 얻었다. 우리는 착색도의 표준화 체계를
위하여 베타-알도-8-카모테노인산 에칠 에스
텔을 이용 하려는 연구에 참여하여 그것이 만족
스러웠다는 결론을 얻었다. 선후로 우리는 베타-
리의 정문보다 피부의 색소의 고갈 및 충분

속도에 더 바른 것을 관찰하여 착색도 연구를
위에서서 3주 이상의 사양기간이 좋다는 결론을
얻었다.