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Pontryagin’s Minimum Principle Applied

to a Double Capacitive Thermal System

oA

(Se Hoon Chang)

Absgtract

This study intends to investigate the optimal switching modes of a double-capacitive thermal
system under different constraints on the state and the control variable, by the application of
the Pontryagin’s Minimum Principle. Throughout the development, the control effort is assumed
to have two modes of state; M or zero and the terminal times being fixed.

In the first part of this study, the Principle is discussed under various conditions for this
particular problem, with different criterion functions and in the same time imposing a certain
constraints; i) on the terminal states, ii) on functions of the terminal states. Depending upon
the upper bound value of the control vector, possible driving modes of the states are studied
from which particular optimal driving modes are extracted so as to meet the specified constrai-
nts and boundary conditions imposed in the problem.

Numerical solutions are evaluated for an over-damped, double-capacitive thermal plant and

the optimal solutions: the switching mode, the optimal switching time, and the control effort

are compared with the analytical results,

development.

1. INTRODBUCTION

In general, when the dynamic equation of the
gystem and the performance in dexare linear in the
control variables, the direct application of the
Minimum Principle yields the switching function in
an implicit function of #(#) and the usual procedure
of selecting the optimal control effort so as to
minimixe the Hamiltonian function fails to provide
reasonable usuful information about the optimality.
Particulally, when the switching junction becomes
identically zero over some finite time interval and
the Hamiltonian function ceases to be an explicit
function of u(?), the usual application of the Prin-
ciple does not offer any information about the
optimal conditions. This type of singular problems
are well investigated by others. Bryson and Ho,

Johnson and Gibson, and Tait offer excellent discu--

R

in the second part of this work, to confirm the

ssions on these problems.

Considering the current academic interests on the
LOP problem. a study of optimal switching modes
to a second-order linear thermal plant is proposed
to investigate how the complete information for the
optimality could be attained, with possibly less
effort in the calculational hinderences of solving the

two point boundary value problems.
2. BASIC THEORY

Let the dynamic equation of the system given in
the following vector differential equation;
F(O=SLx(D, u(t), t]=F+2()+Gu(td 4D
with x2(#,) given and the terminal times 7,, and ¢
are hoth specified. Following inequality and equal-
ity constraints are imposed on the control vector u
(Y and on functions of the terminal states;
w(t)—M=0 ¢



and

¢lx(tr), tr1=0 @
The upper limit of «#(z), M can be free or fixed,
depending whether x(#s) is specified to have presc-
ribed values or not. It can be well expected that
the nominal switching solution, if it exists, will
always require the control variables to be one point
or another of the boundary in the feasible control
region. Let the performance index, J, be in the
following form;
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where v7 is the undetermined Lagrangian multiplier.
If

Ocxcrys tr)=Pcacer’ s 70Tl caerys e5]) &)
then, equation 4 reduces to;

](x(i)y # (1) r] @[z(x!), rf]'*‘
[f ey wenr, 0—k(ED]}dt )

When the terminal times at both ends are fixed as

in this study, the first variation in J results;
(3= )s] o]
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where the Hamiltonian function, H is formed as;
Hicorvuco 1=Lscorunn 2T f i, w0
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3. FORMULATION OF THE PROPORSAL

1. CASE A: As the first case, It is required to
bring the initial temperature x(#,) to the same value
at the fixed terminal time #=¢s but the final value
of temperature is not specified to have a certain
prescribed value.

Let a7 be in the following form;

. _ _®H 8L _.ren OF
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with the boundary conditions;

a0 __ 395 a¢
A= sean T oy T may A0

{L(x(t)y wetys 0 HAT(E).
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then, for the optimality,

oJ= 7 2. ot =\, surdiz0 an
along u(t)—M=0

For this particular case, function of the terminal
state is constrained to have the same temperature
whose value is not specified, and hence, the perfo-
rmance index can be chosen to be in the following
form, by letting L=¢=0 and ¢==0T¢[rc1r5, 15]);

Jeswcos s 1=0Tgecers, iy ]
! .
4+ jt: DPIDLf errwars 5 —F etz ucrys 1} dt

Hence, for the optimality, the influence function

reduces to;

TW==2TW)F a2
with boundary conditions;

T =7 aL,

Al)=uv 20t %))

2. CASE B: As the second case, some of the
final temperatures are specified to have a certain
value(s) at the fixed terminal time. It can be not-
iced that the case is almost the same as before
except the prescription of some of the terminal
temperature at the end terminal time. Since the
rerminal times at both ends are fixed, equation 10
is no longer necessarily valid and hence some mod-
ifications are neccessary in the development thus far
obtained. If it is desired to constrain some of the
components of the state vector to have prescribed
values at {=f{s, the performance index can be
formed in the same expression as in equation 4 or
in equation 6, with the Hamiltonian function H=L1
+2T-f. The first variation in J due to the variation
in control #(¢) from the nominal trajectory, then,
should be in the same form as in equation 7, that

G

{32
+ aalj -5u]dl

If x;, the i-th component of the vector x(2) is
prescribed at Z==f;, then, it follows that the admi-
ssible variation must produce 6x;(¢/)=0 and it is
not necessary to hold (90/3x;—2:)=0 at #=¢s but it
can be rather arbitrary value.

Here, another Lagrangian multiplier T p(t) is int-

roduced and the criterian function 7 is formed in
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the following form;

T=pTd sy, +0TP X i i
t
’*’grf-’au(x),u(r),:)'dt aH

then, with the same argaments in the proceeding
case, the performance index reduces into the more
generalized form, that is; '

Jeowis D=0 arn, 1+l darn, i

'y
+ \” AT e wers i—X e ]

+Leors e, nldt s
let
Olscirsiny=pTban ol Gan,inl (16D
then, equation 15 reduces to the same form as in
equation 6.
As in the previous case, for the optimality, it is
desired to select the influence function to be in the

following form;

ZT(f):-— a‘fl,:w -aL —/lT(i)'F (17)
ox ox
with the bouwidary conditions;
"'/u =129
| P T
AT”"’—"a’E(f,”)‘_'j Utﬁi’*__ j=q+l, n
Lk 0x(te) k=12, 7
(18>

where  equals to the number of the constraining
functions on the terminal states at #==fy and p,;=0

for g+1, g+2 = n.

4. STATE MODEL OF THE PROPOSED
THERMAL SYSTEM

A double-capacitive thermal system depicted in
figure 1-(a) is proposed to be temperature contro-
lled by manipulation of the step type heat input
u(?). The necessary simplifying assumplions are i)
the fluid inside the tank are at a uniform temper-
ature and ii) time delay in temperature distribution
are assumed to be negligible.

From the equivalent relation beiween the thermal
and electrical system shown in Figure 1-(b), the
topological graph is drawn for the proposed thermal
system and a tree is selected as shown in Figure
1-(c), from which the following equivalent system
equations are obtained;

Gi(e;—e;)=Ci(de;/dt)
Gles—e) +Gi(es—e)-+Cy(des/dt)=i(t) aw

or substituting their corresponding thermal equiva-
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Fig.1. Temperature controlled double-capacitive
thermal system proposed for the study.

lent constants and variables;
Crr o=Au 1By 0+ As hiCOi—B)+u(t)
CirBi=Ai"hi0,—0. ¢:1))
When the state vector is selected with respect to
the datum » variable, the outer side temperature of
the tank, the expression of the system model red-

uces further to the following matrix equation;

- (X1 (_(Anha’%“/lihi)/c‘l A,'h.'/CJ\\
W)= =
y ix; [A,-h;/C,- ~—A.-h.-/C.-‘
Xt /C./ 5 ‘
\I‘[ L ad) 4D
X o !
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5. DERIVATION OF THE OPTIMALITY
CONDITIONS

Case A: When this case is treated as having a
constraining function on states at the end terminal
time, then the following function, can be formula-

ted assuming the undetermined constant v be positive

value;
$cr, =0 and ¢an, i="tu[n(tr)—x(tr)]
22)

Hence,

Oxirys er =P sy in=tulxni(t)—x(t5)]) (23

The influence function becomes;

i [}1 1 { (Aoho+Aihi)/Cs —Aihi/Ci )

ACD) = =

‘ 22 ) [ —A:hi/Cy Aik;/C;
( A
N (2>
5 ]2 B

With the boundary conditions;

(tr)=+u[1-1] 25
The optimal control law gives;

u(t)=M when 1u<0

#(t)=0 when >0 (26)

Equation 21 and equation 24 together with the
split-boundary conditions; x¢.y and 2¢s> gives the
optimality condition and from equation 26, the
optimal control mode can be depicted.

Case B: When x,(¢s) is prescribed to have temp-
erature A; at the end terminal time and x; (ts) is
left free, the criterian function I can be expressible
in the following form, by letting ge=@==L=0,

I=ge= Aty [a(ts )~ K] @2
then, it resulis the same influence function as sho-
wn by equation 24 with the change in the boundary
conditions, that is;

o
/Z(tf);[ ] 28
o
On the contrary, if x:(¢s) is specified to have a
certain temperature K. at the terminal time and
x:(ts) is left open at this time,
I=¢=p;(2:(ts)— K] @9
Also, in this case, the similar change is noticed in
. the boundary conditions;

{0
l(tf)::[ 4 1 (&)
e

To obtain the full information for the optimal

chetw 718t8 K] M21A ®i 3 & 1922 5%

control, two matrix equations; the dynamic equa-
tion of the system and the influence equation sould
be solved simultaneously with the boundary condit-
ions given by equation 25, equation 28 or equation
30 thus far obtained under the specific conditions
for each corresponding cases. The terminal condit—
ions on the states go into the side conditions to
determine the undetermined Lagrangian multipliers;
it results the same

#'s and v's. In either case,

control law described by equation 26.
6. OPTIMAL SWITCHING STRATEGIES

Various computational techniques are available to
solve the vector differential equations simultaneo-
usly, with the split-boundary conditions and side
conditions. When the system is over-damped and the
coefficient matrix of the system have distinct eige-
nvalues, the general solution of the influence equa-
tion can be expressible as in the following form;

A B
i) —‘-:[ J
A' B

where A4, B, A’, and B’ should be determined so as

Sy
} (3D

e_l’z'

to saticify the boundary conditions specified in each
of the previous case. p; and p, are the distinct
igenvalues of the matrix F. Since the previous
development shows that the optimal control law is

depend upon 41(2) function only, possible optimal

M(,)

Fig. 2. Possible effective control modes.
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Table 1. Possible optimal control modes

variation of control modes

> |& 0,B 0 or -
A B,A O,B O

mode fconditions on A & B 11(0) 11(0) 1(¢)

1 A20, B>0 or Mf—-/]/ Uy .
A>0, BZ0 or + E - .
‘A.‘(m, AL O, B>0 1 T t ) (,’t
‘420, B<O or Ay T |

o\:tt\
]

3 |ial =iBl, A<0, B>0} O

4 W =B, A>0, BO}| O

o/ B=—kexp(~p, =p, )t

A > 0 where pl‘;'p2
& k>0

A/B=-kexp(-p, -, )t
A< 0O where PI>P, -
& k50

7 | a>i8l, 4>0, BKO| =+

8 |I4>1Bl, A0 ,B>0 -

t
R - +
i

\

I\

control modes are evaluated for each of the corre-
sponding boundary conditions and they are tabulated
in Table 1.

In Table 1, mode 1, mode 3 and mode 5 are the
stationary case of the system and they can be
discarded from our interest. case 2, case 4 and case
6 reveal the same mode of control and the effective

control modes can be summerized as in Figure 2.
7. ANALYSIS OF THE DEVELOPED
RESULTS
To take the numerical illustration of the previous

let A;h;=A.h,=0.1, C.C;=1.0 and

#r=20 sec so that the system under study is over-

development,

damped. With these numerical constants, it can be
shown that both of the states are controllable by

the single scalar input «(s).

1. Case A: The switching function 2:(#) for this

case is found to be;

RBy= 2EL (2. 62¢0 52 o1 g, ggerasn 1)

with 2:(0)==0. 07313 v and L({t/ )=
The variation of the switching function reveals this
case can posses two possible control modes, namely
mode 7 and mode 8 in table 1. The optimal control
law gives u(¢)=M when A1 (¢) is less than zero or

equivalently;
u(t)=M for 0=¢=t,
u(t)=0 for ¢,=t=<tr

Depending on whether the final temperature is
specified to have a certain value or not, this control
case can be splitted into the following two different
cases,

Case A-1; When x:i(¢s)=x.(t,)=K is specified.
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Fig. 3. Transition sequence for the optimal and off-optimal switching for case A,

Table 2. State sequences for the optimal driving of the state for case A.

) , state x:1(2) and x.(22 state x:(2) and x:(8)
time in for heating up for ¢, tr
sec case A-1 case A-2 ; case A-1 case A-2
0.00 0.00 0. 00 0.00 0.00 |
1.00 2.07 0.18 4.14 0.36 ‘
2.00 3.79 0.46 7.58 0.92
5.00 7.33 1.76 14. 66 3.52
8.00 9.73 3.61 19. 46 7.22
8.62 10. 07 3.91 — — ‘
10.00 10.87 4.76 21.74 9.52 |
11.38 11.55 5.55 — — ’
15.00 f13.12 7. 66 26.24 15.32
15.72 13.39 8.05 — —
16. 00 ,13.48 8.18 26. 96 16. 36
16. 67 13.70 8.50 27.39 16. 99 13. 696 8. 496 27.39 16.99
17.12 14.03 9.02 - — - — ‘ — —
17.67 — — — - 12. 001 8. 896 f — —
18. 67 — — - - 10.634 9.128 21.27 18.25
19. 67 — — - - 9.544 9. 207 — —
20. 67 - — — - . 8.660 9.225 17.32 18.45

for case A-1, x:1(¢{s)=x,(¢r)=9.214 and for case A-2, M=4.48

In effect, in this case the problem can be stated
as a fixed terminal case at both ends and it is req-
uired to find the optimal switching time, ¢ and the
upper limit value of u(t) which meets the constra—
ints and the boundary conditions.

From the obtained control law, #(¢)==0 for(¢,, ¢s].

Hence, the state sequence during this time interval

becomes;
2(D)=0C, 1), x({)
and at f={,,

x(t7)=0Cs £:2-x(t,) (32

where @(¢, z) is the transition matrix of the
thermal system.
Solving the above equation for x(%.),
xU@)=07 s, 1) x(ts)
‘The state sequence for the time

33
interval [0, ¢,]
can be obtained from the following relation;

*(O=0C 10)-xt)+| 04 0)-Cout(e)de (3
for to=t=t.

from which the state at the switching time results;

S =00t 10221+ 00, -G ra*(0)+de (36)
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Equating the right side of equation 33 and equation
35 and solving for x(¢s) to yield;
x(tf)zdi“(ts, tf)'¢(tsy 1,,)'.’6(fg)

107t n)j:‘am, -G (2)+dr

=007, 1)+ 22+ [ 017, -G (2)-ds

(367
For x(t,)=t,=0,

x(t;):MjZ‘q)(t/, o 'G-dr:MJ:’ﬁT(T, £5)-Gedr
(€17d)

where 87(r,#s) is the transition matrix of the
adjoint system and «*(¢) is the optimal control
effort.

Equation 37 now can be solved for the unknown,
t;, to obtain the switching time. Once the optimal
switching time 1is found, the complete transition
sequences of the state for whole time interval can

be found from the following expression:

X(D= 0, 10220+ 001 - Gowr(D-de (38)
for L,=t=f,
and
x(D=0, fs)-x(ts)-{'jxd)(t, ) Gou*(ddr (3D
for ts=i=tr

Numerical results for the optimal control are
tabulated in Table 2 and the transition sequences of
the state are plotted in Figure 3-(1). To show the
early or late switching sequences from the optimal
switching time, four different values of ¢, are taken
and the off-optimal transition sequences are imposed
on the same sheet for the comparison porpose with
the optimal driving sequence.

Case A-2: When x1(¢s) and x:(#s) are not spec-
ified but it is required to reach the final states
being the equal temperature.

This is almost the same problem as the previous
case except the final states are not specified. The
optimal swilching time can be optained by the same
development as in the previous case. The terminal
temperature at {=¢; shall be obtained from one
of the state equation by the substitution of the
switching time obtained. In this case, the upper
bound value of the control signal should be specified.
The transition of the state for this case are lotted
in Figure 3-(2) bye the dashed lines.

>ﬁ37__.

2. Case B: As the second case, one of the ter-
minal temperature is specified to have a certain
prescribed value at the fixed terminal time ¢=/s but
the other state temperature is left free.

Case B-1; When x:(¢s) is prescribed to have te-
mperature K at the end terminal time and x:(¢r) is
left open. .

The switching function results;

. o
A(t)= 5 94

mode 1 in Table 1 is the effective optimal control

[1' 6220‘362 (l"f/.) +O. Gzeﬂ +038 (l“if)]

mode. In effect, this results show a contineous dri-
ving problem of finding an adequate value of M,
using the dynamic equation of the system and no
switching action is involved in this driving mode.
Let this value of #(#) be denoted by M.. From the
dynamic equation of the system, the state transition

for the time interval [o, #,] is;

HO=0,1) 2+ 00 G- Merds 4D
with x(#,)==0 and #,==0,

*(0) =0t )G+ Med “D

The numerical sequences of the transition of states
are evaluated and plotted in Figure 5-(1). Obvio-
usly, the minimum value of «(#) which can transfer
the state along this path is given from the expres-
sion below;

M,=2.24x:1(ts)/(22.4—6. 2e ~016% 16, 270038 )

When #(¢) is less than this critical value, then
one is never able to transfer the state to the spec-
ified temperature within the fixed terminal time.
On the other hand, when #(¢) is allowed to have
larger than this M., then one may wonder, intuit-
ively, that mode 7 and mode 8 in Table 1 are also
possible driving modes of the state to the specified
value. It is interesting to note that the proceeding
development does not involve any one of this control
mode. The performance index is modified, at this
time, in the following form;

¢==—o[n:(¢,)— K], L=Fu, and ¢=0=0

That is, another constraint on the power consu-
mption is imposed, then, it results the influence
equation and the boundary conditions in the same
expression as before. The optimal control law, now

at this time, yields to;
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that is,

u(t)=M for i< —1 for minimum power
consumption
u(@)=M for i<{+1 for maximum power
consumption
Figure 4 shows the variation of the switching

function and the desired control effort for both

cases.
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Fig.4. Driving modes of the state for max. & min.
power consumption for case B.

For the case of maximum consumption, the opt-
imal switching time, #; may be obtained from the
following expression;
K/M+-3.4136=0. 01462556¢° 2, +-3. 396731’ %
Numerical results with x:(¢,/)=10, #,=20sec, and

with M=5.6928 are tabulated-below;

for max. power consumption

switching time=¢,=10. 0 sec
u(t)=5.6928 for 0=i=¢,
u($)=0 for ¢,=t=t,

power consumption=>56. 928
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driving, the driving with maximum power consum
ption and the driving with minimum power consu-
mption, are tabulated in Table 3 and are compared
in Figure 5-(1).

Case B-2; Here, at this point, it may be reaso-
nable to consider the reversed case of the previous
discussion. At this time, temperature x:(¢;) is
specified at the end terminal time to have a certain
prescribed value K, but x:1(¢s) is left free.

The switching function 2.(¢) gives;

71(t)—~2»+20 [@0252 Ct=t 1) L g0-038 (£~ 1) )

The application of the Minimum Principle reveals
that the optimal driving mode of the state is the
mode 6 in Table 1. The critical

this control mode is found from the second expres-

value of u(¢) for

sion in the dynamic equation of the system. With
x:(t)=K,=10, M. is found to have 2.203.

As in the previous case, when M, is allowded to
have more larger wvalue than this, then by the
similar development, the switching time, #,, for the
maximum power consumption and the optimal swit-
ching time, ?,, for the minimum power consumption
can he obtained from the following two expressions;

K3/ M5, 4799:=5. 4889¢°9%*,,,—0. 00902¢" 2321,
for max. power consumption

K>/ M=1-1.6964¢ 02020 ;= ) —11. 69640038 ¢t~ >

for min. power consumption

For x,(¢s)=K,=10.0, and with M=4.48, the
optimal control mode is evaluated and are summer-

ized below, for each cases;

for max. power consumption

optimal switching time=¢,,

=9. 35 sec
u(i)=4.48 for 0=¢=<{,,
u()=0 for t{en.<t=<ts

power consumption=4]. 888

for min. power consumption

switching time=¢,,=17. 8 sec
u()=0
u(t)=5. 6928

power consumption=12. 524

for 0=t=t¢,,

for t,<t=<itr

The state sequences for each cases: the direct

for min. power consumptmn

optimal switching time=t¢,,
=10.65 sec
for 0=t=t,

for 1,=<t=<ts

(=0
u(2)=4.48
power consumption==4]. 888
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Fig 5. State transitions for case B.
Table 8. State sequences for the optimal driving of the state for case B.
TIME state x1(¢) and x.(¢) for case B-1 state x1(#) and x,(2) for case B-2
sec direct max. power min. power direct max. power min. power -
0.00 0.000 0.000, 0.000 0.000 0.000 0.000 0.00 0.00
2.00 1.767 0.001 9.466 0.901 3.663 0.349 7.58 0.92
5.00 4.956 1.189 18.630 4.470 7.210 1.730, 14.66 3.52
8.00 — — — —] — —| 19.46 7.22
10. 00 7.349 3.218 27.637 12.096 10.690 4.680 — —
10. 65 - — — — — — — — 0.00 000
11.35 — — — — — — 15.70 10.48 — —
12.65 — — — — — — - — 7.58 0.92
14.35 — —_— — — — — 1111 11.14 — —
15.00 — —| 14.727 15.012 12.900 7.531] — - — —
17.65 — — — — — — - —i 14.66 3.52
17. 80 — — — — 0.00 0.00 - — - — — -
18.18 — — — —| 6.051 0.052 — — - — - -
19.35 — — — — — - — — 7.49 10.26 — —
19.80 — — - — 9.466 0.901 — — — — — —
20.00 10.000 6.874] 9.986 13.765 — — 14.547 10.00 — — — -
20.35 — — — — — — — - — —| 15.70 10.48

Once the switching time is found, the evaluation
of the state sequences for each of the three cases
are straightfoward and the results are plotted in
Figure 5-(2). It is worthwhile to note that the
power consumption for the three cases shows rather

different features from those of case B-1.
8. CONCLUSIONS AND DISCUSSIONS

1. As expected, the switching function for the

LOP problem proposed reveals little information

about the optimal switching time and the control

effort required, without virtually solving the

dynamic equation .of the system and the influence
function. It is understood that the general hinder-
ances for obtaining numerical solutions of the matrix
differential equation with split-boundary conditions
are of guessing the starting trial values for the
solutions. Even though the switching function thus
far obtained does not provide an explicit expression
about the switching time, it was illustrated that
one can, at least, depict the possible optimal control
modes from the switching function and hence this
provides quite reasonable means of guessing the

starting point for the solutions.
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2. Depending upon the upper bound value of u(#),
the application of the Principle gives different
possibilities for the optimal solution to the problem.
For case A, the control mode (a) in Figure 2 is the
only optimal control mode applicable to the case
when the terminal temperature is required to be
the same value at ¢=¢;. The problem is, then, left
for finding the switching time, ¢, and the upper
bound of the optimal control effort. The optimal
switching time was found to be unique.

3. For case B, when x1(¢s) is apecified and x:(¢s)
is left free, it has shown that three of the driving
modes in Figure 2 are found to be the possible
optimal control mode. Depending upon the upper
limit of #(¢), different type of driving should be
employed, that is;

i) when M~M., then the control mode (b) in
Figure 2 is effective

ii) when M=>M., the control mode (a) or (c) in
Frigue 2 is effective. It is worthwhile to note the
power consumption for each of the three possible
driving cases of the state. The control mode (c)
showed the minimum power consumption, meanw-
hile, the mode (a) consumed the maximum power
for achieving the desired driving of the state. For
the case when M—M,, u(¢) remains on the same
state for whole time interval (o, ¢;) and no swit-
ching action involved in this driving mode. This
mode required the least value of u(¢) for reaching
the same terminal states, comparing with the other
cases.

4. When x.(ts)

temperature at /={; instead of x1(¢s) and xi(¢s) is

is specified to have a certain

left open, M, is found to be larger than the value

obtained in case B-1 for the same final temperature.
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With MM, and with the control mode (b), the
power consumption for (o, fs) is found to be 44.06

which is larger than that of case B-1.
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