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ON (f,g,e,u,v, ) -STRUCTURL
By YonG Bal Baik

§0. Introduction.

Yano and Okumura [7] have defined (f, g, v, A)-structure on an even dimensional
-differentiable manifold. We see that hypersurfaces of an almost contact metric manifold
-and submanifolds of codimension 2 of an almost Hermitian manifold admit an (£, g, 4,
v, 4) -structure. )

Yano, Ishibara, Okumura and Yamaguchi have studied submanifolds of codimension
2 of an almost contact manifold. These submanifolds admit another structure. we call
such a structure an (£, E, U, V, e u, v, ) -structure. If the ambient space is an almost
contact metric manifold, the submanifolds admit what we call an (f, 2, & u, v, A) -struc-
ture.

The main purpose of the present paper is to study the (f, g e, u, v, A)-structure and
to give some properties valid in manifold with normal (f. g, e, u, v, A) -structure.

In §1, we define and discuss ( fLE, U, V, e u v, 3) -structure and {f, g, e, , v, A) -struc-
ture.

In §2, we study submanifolds of codimension 2 of an almost contact Riemannian
manifold as example of the manifold with (f, g, e u, v, A) -structure.

In §3, we study submanifolds of codimension 3 of an almost Hermitian manifold as
another example of the manifold with (f, &, &, u, v, A) -structure. )

In §4, we prove that a manifold with normal (7, g, e, 4, v, 4) -structure satisfying de
=w is a normal contact Riemannian manifold or a manifold with f-structure.

In §5, we find some properties valid in manifold with normal (f, g, ¢, %, v, 3) -structure
statisfying du=1w and dv==¢w, and we prove that the vectors U and V define infini-
tesimal conformal transformations under certain conditions.

The last §6 is devoted to prove two theorems which characterize odd dimensional
sphere.

§ 1 (f’ g.eu,no, 12) ~gtructure.

Let M be an m-dimensional differentiable manifold of class C~, we assume that there
-exist on M a tensor field f of type (1,1), vector fields E, U and V, 1-forms e, 4 and
‘v, and a function 1 satisfying the conditions:

.1 fAX=—X+te(X)E+u(X)Ut+v(X)V
for any vector field X,
(1‘ 2) eof-_—(), fE=0’

(1.3 gof=jv, fU=-21V,
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(1.4 vof=—u, fV=21U,

and

(1.5) e(E)=1, e(U) =0, e(V) =0,
(1.6) u(E) =0, 2 (U)=1—2, u{V) =0,
1.7 v(E) =0 »(U) =0, o(V)=1—2.

In this case, we say that the manifold has an (f, E, U, V, e, u, v, A) -structure. Example
of the manifold with (f, E, U, V, ¢, 4, v, 1) -structure will be given in §2 and §3.

Moreover, in M with (f, E, U, V, e, u, v, i) -structure, if there exists a positive definite
Riemannian metric g such that

(1.8) g(X,E)=¢e(X), g(X,U)=u(X), g(X V)=0v(X),
and
(1.9) g(fX, fY)=g(X,Y) —e(X)e(Y) —a(X)u(Y) —v(X) v(Y)

for any vector fields X and Y of M, then we call such a structure a metric (f, E, U,
V, e, u, v, 2) -structure ane denote it sometimes by (£, g, e, », v, A) -structure.

First of all, we prove

LEMMA 1.1. Let M'={P|A(P)51}. Then the three vector fields E, U and V are
linearly independent on M.

Proof. Since i#1, from (1.5), (1.6) and (1.7), we see that the vector fields E,
U and V are non-zero. If there are three numbers a,b and ¢ such that
aE+bU+c V=0,
then evaluating ¢, # and v at the above equation, we have respectively
e(aE+bU+cV) =a=0,
u(@E+bU~+cV)=5b{1—2%) =0,
and
v(@E+bU+cV) =c{1— %) =0,
from which we have a=b=c=0. Thus E, U and V are lineaely independent.
LEMMA 1.2. Let My={P|A(P)=0}. Then (f,E, U, V, e, u,v, A)-structure is an f-struc-
ture on M. :
Proof. Since i=0, from (1.5), (1.6) and (1.7), we have
(1. 10) FE=0, SfU=0, fv=0,
from which and Lemma 1.1, we see that the rank of matrix (f) is m—3.
Operating f to (1.1) and using (1.10), we get
F3X+FX=0
for any vector field X on M, Thus f define an f-structure of rank m -3 on Mo, which:
is defined by Yano (5).

PROPOSITION 1.3. A differentiable mamfold with (f, E, U, V, e, u, v, A) -structure is of”
odd dimension.

Proof. If the vector fields E, U and V are linearly independent, then there are two
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<cases:
1) u+0, 70, 2) u=0, v=0.
We consider the first case. In this case, 1-forms e,z and v are linearly independent.
We see that the manifold with (f, U, V, u, v, A) -structure is even dimensional [7]. Thus
the manifold with (f, E, U, V, e, 4, v, #) -structure is odd dimensional.
We considerer the second case. From (1.5), we see that E is a non-zero vector and

¢ is a non-zero 1-form, then from (1.1) we get

fiX=—-X+e(X)E,
for any vector X. Thus the manifold M is odd dimensional.

Next, if the vector fields E, U and V are linearly dependent, then U and V are
both zero vectors. For, if there are two numbers a and & such that

aU+bV=0, a®+b%£0,
then operating f to the above equation and using (1.3), (1.4), we get
bU—aV=0.

‘Comparing the two equations, we have U=V=(0. Then the ([, E, U, V, ¢, u, v, 4) -struc-
ture is an almost contact structure. Thus the manifold M is odd dimensional.

PROPOSITION 1.4. Let w be a tensor field of type (0,2) of M defined by
(2.11) w(X, Y)=g(fX, Y)
Jor any vector field X of M. Then w is a 2—form.

Proof. By the definition of w and (1.9), we get

w(fX, fY)=g(fX,Y) —e(fX)e(Y) —u(fX)u(Y) —v(fX)v(Y)
=w(X,Y) =i (X)ulY) (X))o (Y).
On the other hand, using (1.1}, we have
w(fX, fY)=g(f?X, fY)=—g(X, fY) +e(X)e(fY) ~2(X)u(fY) +v(X)v(fY)
=—w(Y, X)+a{X)v(Y) —i(X)ul(Y).

Comparing the two equations above, we have
(1.12) w(X, Y)=-w(Y, X).

DerFINITION. The structure (f, E, U, V,e,u,v, 4) is said to be normal if the Nijenhuis
tensor N of f satisfies
(1.13) SX,Y)=N(X,Y)+2de(X, Y)E+2du (X, Y) U~2dv(X, Y) V=0
for any vector fields X and Y of M.

We consider a product manifold MxR3, where R® is a 3-dimensional FEuclidean
space. Then, (f,E,U,V,e, u,v,2)-structure gives rise to an almost complex structure J
on M xRS For, if we put

_[ —e 0 0 0
(- 14 (J)“i -« 0 0 —i
‘v 0 i 0

then we can easily find that J2=—7, where I is unit matrix.
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If an almost complex structure J is integrable, then the Nijenhuis tenser of J vani-
shes identically, that is,
(JX, JY]—JJX, Y]—J[X,JY]-[X, Y]=0
for any vector fields X and ¥ of MxR3. In this case, from (1.14) we can easily
prove that S(X, Y)=0. Thus we have

PROPOSITION 1.5. If J is integrable, then (f,E,U,V, e, u, v, A)-structure is normal.

8§2. Example L

In this section, we study submanifold of codimension 2 of an almost contact Rieman-
nian manifold as example of the manifold with (f, g, ¢, %, v, 4} -structure.

Let M be a (2n+1)-dimensional differentiable manifold with an almost contact.
metric structure (¢, &, 7, G) such that

@.1) ¢ X=—X+7(X)¢,

(2.2) =0, 7(@X)=0, (=1
(2.3) 7(X) =G, X),

(2.4) G (X, ¢Y)=G(X,Y)—7(X)»(Y),

for any vector flelds X and Y on M.

If in an almost contact Riemannian manifold the tensor defined by
(2.5) S(XY)=N(X,Y)+dy(X,Y)§
vanishes identically, the structure is said to be normal and the manifold M is called a
normal contact Riemannian manifold. In a normal contact Riemannian manifold we have
the following identities for any vectors X and ¥
(2.6) ) (Y)=G(6X,7).

2.7) x8) Y=5(Y)X~G(X,Y),
where 7 denotes the covariant differentiation with respect to G.

Let M be a {2n-1)-dimensional submanifold imbedded in M with imbedding map i :
M—DM. Let iy be the differential of i and X the corresponding vector field for any
vector field X on M, that is, X=i.X. Then the induced metric g on M is given by
(2.9 g(X,Y)=G(X,7)
for any vector fields X and Y on M. We assume that the vector field £ belong to the
tangent space of (M), then there exist a tangent vector field E and an 1-form ¢ on
M such that
(2.9) E=E, e(X)=y(X).

It is easy to see [1] that we can define a tensor field f of type (1,1), the vector
fields U and V, 1-forms # and v, and scalar field A on M by
(2. 10) $X=FfX+u(X)C+v(X) D,

(2.11) ¢$C=—U+iD, ¢D=—-V—-IC,
where C and D are two mutually orthogonal unit vectors of M normal to i(M).
Operating (2. 10) with ¢ and taking account of (2.1) and (2.11), we get
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(2.12) [X=—X+e(X)E+u(X)U -0v(X) V,
(2.13) u(fX)=h(X}), o(fX)=~—iu(X).
Similarly, we have from (2.11)
(2.14) SJU=—4iV, fV=iU.
(2.15) u(U)=0v(V)=1—-42 u(V)=v{(U)=0.
From (2.2) and (2.9), we get
(2.16) e(E) =1, e(fX) =0,
(2.17) fE=0, e(U) =0, e(V)=o0.
On the other hand, substituting (2.10) into the equation (2.4), we obtain
(2.18) g(fX, fY)=g(X,Y)—e(X)e(Y) —u(X)u(Y) —v(X)v(Y).

Equations (2.12)~(2.18) show that a submanifold of codimension 2 of an almost
contact Riemannian manifold admits a (f, g, ¢, u, v, ) -structure.

Let 7 be the covariant differentiation with respect to g on M. Then the equations
of Gauss and Weingarten are given by
(2.19) FPe¥=PxY+h(X,Y)C+k(X, Y)D,
(2. 20) PsC=—HX+1(X)D, PxD=-KX—1(X)C,
where kb and k are the second fundamental tensors and / the third fundamental tensor
and H and K are tensors of type (1,1) such that

R(X, Y)=g(HX, Y), k(X Y)=g(KXY).
Now differentiating (2.10) covariantly on the submanifold M, we obtain
(P2d) T+ ol7xY+h (X, Y)C+E(X, Y) D]
=7xf) T+ F(7xY) —u(YVHX~v(Y) KX+ [ (7xY) + (7xa) (Y) +A (X, FY)
—o(YY(X)IC+ToxY} + (Fxo) (Y) +2(X, Y) +u(Y)I(X)]D.

Thus, if M is a normal contact Riemannian manifold, then from (2.7) and (2.9) we
have
@2.21) (Pxf)Y=e(Y)X—g (X, Y)E-h(X,Y)U—2(X,Y) V+u(Y)HX+v(Y) KX,
(2.22) Fxu) (Y)=—2k(X,Y) —h(X, fY)+v(X)I(Y),
(2.23) (7yv) (Y) =2 (X, Y) —k(X, fY) —u(X)I1(Y).

Differentiating (2.6) covariantly and using (2.9), we get

(Pxe) (Y) +e(7xY) =G (X, Y) +7[7xY +h(X, Y)C+£(X, Y) D]

from which
(2. 24) 7xe) (¥) =w (X, Y).

Substituting (2. 21) ~ (2.24) into the equation:

S Y)=fWy)X—fWxA)Y+Werx Y- Wiy )X+ (7xe) Y— (Pve) X1E
+[(qu) Y- (Vyll)X]U"‘}‘[(va) Y- (Vyv) X]V

we find '
(2. 25) S(X, Y)=u(Y) (Hf+fH) X—u(X) (Hf+fH) Y
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oY) (KfF+fK) X—o(X) (KF+fK) Y
+ (X HY) —v (V) 1(X) Ut (@ (V) 1(X) —2(X) () V.

Now, we assume that the connection of normal bundle of M is flat. Then we can
<hoose two locally unit vector fields C and D in such a way that the 1-form [ vanishes
identically. In this case, if f anti-commute with H and K, that is,

(2. 26) Hf+fH=0, Kf+fK=0,
then we get S(X, Y)=0. Thus we have

PROPOSITION 2.1. Let M be a submanifold of codimension 2 of a normal contact
Riemannian manifold whose connection induced in the normal bundle is flat. If the
vector field & is tangent to M and f anti-commute with H and K, then M admits a
normal (f, g, e, u, v, A)—structure.

I the submanifold M is a totally geodesic, then H=K=0. Hence we have

COROLLARY 2.2. Let M be a totally geodesic submanifold of codimenision 2 of a
normal contact Riemannian manifold whose connection induced in the normal bundle is
flat. If the vector field € is tangent to M everywhere, then M admits a normal (f, g,
e, u, v, A) -structure.

For a totally umbilical submanifold whose connection induced in the normal bundle
is flat, we bave
R(X, Y)=ag(X,Y), kX Y)=62(X,Y), I(X)=0
for any vector fields X and Y on M, where @ and 8 are scalar functions. And conse-
quently (2.22) and (2.23) become

2.27) (7xu) (Y) =aw(X, Y) —28g (X, Y),
and

(2. 28) 7xv) (V) =pw(X, Y) +iag (X, Y),
respectively. FromZ (2.27) and (2.28),

we get

(2.29) (7xu) (V) + (7yu) (X) =—228g (X, Y).
and

(2. 30) (Fxv) (Y) + (7yo) (X) =2%ag (X, Y).

Thus we have

PROPOSITION 2.3. Let M be a totally umbilical submanifold of codimension 2 of a
normal contact Riemannian manifold whose connection induced in the normal bundle is
Slat. If the vector field & is tangent to M and A is an almost everywhere non-zero
Sunction, then the vector fields U and V define infinitesimal conformal transformations.

§3. Example I

In this section, we study submanifolds of codimension 3 of an almost Hermitian ma-
nifold as example of the manifold with (f, g, e, u, v, 2) —structure.
Let M be a (2r+2)~dimensional almost Hermitian manifold and let (F, G} be the
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almost Hermitian structure such that -

3.1) FX=-X,

(3.2 G(FX,FY)=G(X,7),
for any vector fields X and ¥ on M.

Let M be a {2r-1)-dimensional submanifold imbedded in M with imbedding map
it M—M. Let iy be the differential of i and X the corresponding vector field for any
vector field X on M, that is, X=isX. Then the induced metric g on M is given by

(3.3) g (X, Y)=G(X,7),
for any vector fields X and Y on M.

We can define a tensor field f of type (1,1), the vector fields E, U and V, 1-forms
¢,u and v, and scalar functions A; such that ;=—74; (;,j=1,2,3) on M by

(3. 4) FX=fX+e(X)Ny+u(X) Ny+v(X) Ns,
(3.5) FNy=—E+ A12Np+ A13N3,
(3.6) FNy=— U~ j1aN; -+ Ap3Ns,
3.7 FN3=—V—213N;— 253N,

where Ni, N, and Nj; are three mutually orthogonal unit vectors of M normal to i (M).

Operating (3.4) with F and taking account of (3.1), (3.5), (3.6) and (3.7), we
get

(3-8) fiX=—X+e(X)E+u(X)U+v(X)V,
(3-9) e (fX) =hpu(X) + A0 (X), 8(fX)=-12pe(X)+2sv(X),
v {(fX) =— 2z (X) — 2o (X),
-or
{3.10) eof=rl1au-+i3v, uSf=—Ape+iou, vof=—lize— loau.
Operating F to (3.5), (3.6) and (3.7) respectively, we find
{3.11) SE=—ipU—43V, fU=41E—ipuV, fV=isE+inU,
(3.12) e(E)=1—Ip?—hs% e(U)=—1ligdos e(V)=—11ds,
(3-13) u(E) =—ipin, #(U)=1-41—25% (V) =1l
{3.14) v(E) =—Aiphs, v (U) =—2pphiz, v(V)=1—2132—225%
If we put
(3. 14) Ae=Ai3=0, Ap=4,
then we have from (3.10)~-(3.14)
(3.10)7 eof=0, uof=1v, vof=—2u,
{3.11)’ FE=0, JU=—iV, fV=iU,
(3.12)’ e(E) =1, e(U) =0, e(V)=0,
(3.13)7 u(E) =0, w{U) =1—-2, u(V}=0,
(3.14)7 v(E) =0, v(U) =0, v(V) =1—2,

respectively. Equations (3.8) and (3.10)-(3.14) ' shows that a submanifold of
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codimension 3 of an almost Hermitian manifold admits a (f, g, e, #, v, A)—structure.
Next, let 7 be the covariant differentiation with respect to g on M. Then the
equations of Gauss and Weingarten are given by

(3.15) VeY="yxY +h (X, YY) Ny +ho(X, Y) Ny +hg (X, Y) N,
(3.16) V2N =—H; X—115(X) Ng—l13(X) N,
(3.17) 7 gNy=—HoX+ 115(X) N1—13 (X) N,
(3.18) 7 2N3=—HyX+113(X) Ny+1(X) No,

where H; are the second fundamental tensors corresponding to N; respectively, and /;
are the third fundamental tensors.
Differentiating G{Y, N;) =0 covariantly, we get

G(VzY, N) +G(Y, 7 2N;) =0.
Substituting (3.15)—(3.18) into the above equation, we get
(3.19) hi(X, Y) =g (HX, Y).
Differentiating (3.4) covariantly, we find
(72F) Y+F (7xY) +h (X, Y) Ny +ha (X, Y) Naths (X, Y) N3
= (7xf) Y+fWxY) —e(Y) HiX—u(Y) HuX—v(Y) HsX
+ (2 (X, fY) + (Fxe) Y+e(FyY) +2(Y) 112 (X) +o(V) L:(X)) Ny
+ (e (X, fY) + (Pxw) Y+u(FxY) —e(Y) [ (X} +v (Y) Ins (X))Nz
+ (B3 (X, fY) + (Fx0) Y+o(PxY) —e(Y) s (X) —u(Y) 1 (X)) N.
If M is a Kaehlerian manifold, that is, if FgF=0, that we have

(3. 20) Wxf) Y=e(Y) HiX+u(Y) HbX+v (Y) H3X—m (X, Y)E
~h (X, YYU—R (X, Y)V,.
(3.21) (Fx.) Y=—h (X, fY) —u(Y) I12(X) —v(Y) L3 (X),
(3.22) (7xu) Y=—Ih3 (X, Y) —hs (X, fY) +e(Y) 112 (X) —v(Y) I3 (X),
(2.23) (Fxv) Y=2hs (X, Y) —hs(X, fY) +e(Y) lis(X) +u(Y) 15 (X).
Substituting (3. 20)—(3.23) into S(X, Y), we have
(3.24) S(X, Y) =e(Y) (Hif—fH) X—e(X) (Hif —fH) Y+u(Y) (Hof —fH) X

—u(XXHzf—fH) Y+o(YXHsf—fHs) X—o (XN Hs f—fH3) Y
+ {2 (X) L2 (Y) +0(X) i (Y) —2(Y) 12 (X) —v(Y) s (X)) E
+ (e(Y) 112 (X) —v(Y) Lo (X) —e(X) 112 (Y) +0(X) 13(Y)) U
+ (e (Y) 1ia(X) +u(Y) s (X) —e(X) 1 (V) —u(X) 15 (Y)) V.

If the connection of normal bundle of M is flat, then we can choose Ny, N, and N;
in such a way that the 1-forms /;; vanish identically. In this case, if f commute with.
H;, that is,

(3.25) H;f—fH:=0, (i=1,2,3)
then we get S(X, Y)=0. Thus we have

PROPOSITION 3.1. Let M be a submaniold of codimension 3 of Kihlerian manifold
whose connection induced in the normal bundle is flat. If fcommate with H;(i=1,2, 3}
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and i2=i;3=0, Aim=21 in (3.5)—(3.6), then M admits a normal (f, g e u v, A)—
structure.
If Mis a totally umbilical submanifold, then f commute with H; Thus we have

COROLLARY 3.2. Let M be a totally umbilical submanifold of codimension 3 of a
Kahlerian manifold whose connection induced in the normal bundle is flat. If io=13=0
and Jps=2 in (3.5)~(3.7), then M admits a normal (f, g, e, u, v, ) -structure.

For a totally umbilical submanifold whose connection induced in the normal bundle
is flat, we can choose unit normal vectors N; (i=1,2,3) in such a way that
hi(X,Y)=hg(X,Y), [;;=0, (;j=1,23)
and consequently (3.21), (3.22) and (3.23) become

(3.26) (Fye) Y=hw(X,Y).

(3.27) (Feu) Y=hw (X, Y) —hsg (X, Y).
(3. 28) (Fyv) Y=hsw (X, Y) +hg (X, Y).
respectively. These equations give

(3.29) (7xe) Y+ (7 ve) X=0,

(3. 30) Zxw) Y+ (Pyu) X=—24hag (X, Y),
(3.31) (Fx0) Y+ (Pyv) X=22hg (X, Y),

which show that E defines an infinitesimal motion and U, V define infinitesimal con-
formal transformations respectirely.

§4. Manifold (I) with normal (f, g, ¢, u, v, ) -structure.

In this section, we study a manifold with normal (f, g, e, 4, v, 4) -structure satisfying
certain condition.

Let M be a manifold with normal (f, g, e, v, %) -structure. The structure being
normal, we have

(4.1) SXY) =W Y= W) X+fW0ef) X—FWxf) Y
+2de(X, Y) E+2du(X, Y) U+2dv(X, Y) V=0.
We first prove

LEMMA 4.1. In a manifold M with normal (f, g, e, u, v, A) -structure, we have

4.2 de (X, Y) =de(fX, fY),

(4. 3) 2du (X, Y) =2du (fX, fY) —2(dv(fX, Y) +dv(X, fY)) — ((FsxA) v(Y),
— Ao (X) —2(FxA)u(Y)— Ty u (X)),

and

(4.4) 2dv (X, Y) =2dv (fX, fY) +2(du (fX, Y) +du (X, f¥) + ((7sx2) u(Y)

— Py u(X) =2({F) v (Y) — 7yl v (X)).

Proof. Substituting (4.1) into g(S(X, Y), E) =0, we have
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or
—g(fY,rE) +2(fX,7ivE) +2de(X, Y) =0,
from which we have
— (Fixe) fY+ (Psre) fX+2de (X, Y) =0,
from which we have (4.2). ,
Next, substituting (4.1) into g{S(X, Y), U) =0, we have
g((Zsxf) Y, U) —g (7svf) X, U) +2(g (Frf) X, V)
—g(Pxf) Y, V) +2(1—3 du(X, Y) =0,
or
Trxh) g (Y, V) +ig (Y, 71xV) —g (fY, 0 1xU) — FyA) g (X, V) —g (X, P 1y V)
+g(f X vU) —2((ryd g (X, U) +2g (X, 7y U) +g (FX, FyV))
+i((7x) g (Y, U) +g (Y, 7xU) +2 (fY, FxV))
+2(1— A da(X, Y) =0,
from which
Me(Y, 7 V)—g(fX, ryV) —g (X, Vv V) +2g (fY, FxV)) —2du(fX, fY)
+2du( X, Y)+ Frxd) g (Y, V) — (Fryd) g (X, V)
+2({Fx2) g (Y, U) — (PyA) g (X, U)) =0,
from which we have (4.3).

Similarly, computing g (S{X, Y), V) =0, from (4.1) we have (4.4).
In a manifold with normal (f, g, e, %, v, A) -structure, we put the condition

(4.5) de(X,Y)=w(X,Y).

As we have seen in the preceding section, for a submanifold of codimension 2 of a
normal contact Riemannian manifold, we have

(VXe) Y=w (X1 Y) ’
and consequently the condition (4.5) is always satisfied.

LEMMA 4.2. Let M be a manifold with normal (f, g, e, u, v, A)-structure satisfying
4.5). Then we have 1=0 or =1

Proof. Substituting (4.5) into (4.2) and taking zccount of (1.1), we get
w(X, Y) =w (X, fY) =—g (X, fY) tu(X) u(fY) +0(X) v (fY)
=w (X, Y) +ilu(X) oY) —v(X)u(Y) ]
from which
il (X)v(Y) —o(X)u(Y)]=0.
Now putting X=U and Y=V, we have
A(1—19%=0,

from which we have i=0 or 2=1.

PROPOSITION 4.3. Let M be a manifold with normal(f, g, e, u, v, 2) -structure satisfying
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(4.5). Then the manifold is either an almost normal contact Riemannian manifold or
a manifold with f-structure of rank (2n—2).

Proof. M being a manifold with normal (f, g, ¢, », v, A} -structure satisfying (4.5).
From Lemma 4.1, we have ##=1 or i=(.

If i2=1, then u(U)=v{V)=0, and U=V=0. Thus we have
fPX=-X+e(X)E.
Hence the manifold M is a normal contact Riemannian manifold.

If i=0, then the vector fields U and V are unit vectors. From (1.3) and (1.4) we
have

(4.6) fU=0, fV=0.
Operating f to (1.1) and using (4.6), we have
(4.7) i X=—fX.

from which we have f3+f=0 and rank of f is 27-2. Thus normal (f, g, e, 4, v, 2)-
structure is an f-structure of rank 22—2.

§ 5. Manifold (II) with normal (£, g, ¢, u, v, ) -structure

In this section, we assume that

(5.1) du(X, Y)=w(X,Y).
and
{5.2) dv(X,Y)=¢w(X,Y).

where ¢ is a differentiable function.

LEMMA 5.1. Let M be a manifold with normal (f, g, e, u,v, A) ~structure satisfying
(5.1) and (5.2). If the function A(1—i2) is almost everywhere non-zero, then we have
(5.3) Pyi=—(1-2),

(5-4) Poi=¢(1—49).
Proof. Substituting X=U and Y=V into (4.3), we get
2du (U, VY =2du{fU, fV) —ildv(fU, V) +dv{U, fV}) — (1—13) (PsA)

+A(1-43) wva),
from which, using (1.3)

(5.5) 21— du(U, V) —-22(1— 23 (Fya) =0.
On the other hand, from (5.1) we get
(5.6) du(U, V) =w(U, V) =g (fU, V) =—2(1—2).

Substituting (5.6) into (5.5), we have
—22(1— 38 2—23(1— 49 (FyA) =0,
from which we have (5. 3).
Similarly, Substituting X=U and Y=V into (4.4), we have (5.4).

LevMA 5.2, Under the same assumptions as those in Lemma 5.1, we have
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(5.7) Vxi=¢u{X) —v(X).
Proof. From (4.3), (5.1) and (5.2), we get
2w (X, Y) =20 (fX, fY) — FrxA) v (Y) + 7syd) v(X) —2@xD u(Y) +2 (7yd) u (X),
or
22 (e (X) v(Y) —v(X) 2 (Y)) — (Prxd v (Y) + (Frrd) v (X) —2(FxA) 2 (Y) +2(Fy2) u (X).
Replacing X by U in the last equation, we find
22(1—=2) v (Y) + 2Py oY) —2(Fpd) u (Y) +1(1—12) (Fyd) =0,
from which, substituting (5.3) and (5.4),
22(1—=2) v(Y) —2(1—-B)v(Y) —¢A(1— D (Y) +1(1—2) {Fyd) =0,
which proves (5.7).

LEMMA 5.3. Under the same assumptions as those in Lemma 5.1, ¢ is constant.

Proof. Differentiating (5.7) covariantly, we have
gy i X) = vg) u(X) +¢ (Fyu) X— (Fyv) X.
Replacing X by Y in the last equation, and subtracting the original one, we have
gl u(X) — (Fxo) w) Y+ ((Fyw) X— (Fxu) Y) — ((7yv) X— (Pxv) Y) =0,
from which, using (5.1) and (5.2)
Wyo)u(X) = (Fxp)u(Y).

which implies that
(5.8) Vxg=au(X),

for some scalar function a.
Differentiating (5.8) covariantly, we get

: gWyre, X) = Fya)u(X) +a (Fyu) X.
Replacing X by Y in the last equation, we get
(Fya) u(X) — Fxa) u(Y) +a ((Fyu) X— (Fxu) Y) =0,
from which, using (5.1),
(5-9) 2aw (X, Y) = (Pra)u(X) — (Fxa)u(Y).
Thus we have a=0 because the rank of w is almost everywhere maximum. This
shows that ¢ is constant.

LEMMA 5.4. Under the same assumptions as those in Lemma 5.1, we have

(5. 10) (7yu) U+ (Fyu) X=—21¢u (X),
and
(5.11) (Fxv) V+ (Pyo) X=22v(X).

Proof. Differentiating u (U) =1— A2 covariantly and using (5.7), we find
2 (7xu) U=—22(¢u (X) —v(X)).
Substituting this into
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oWyw) U= {(Fxu) U+ (Fra) X) + ((Fxe) U— 7r0) X)
=(Fyu) U+ 7ru) X) +2/0(X),
we {ind
—22(gu (X) —v (X)) = 7xu) U+ (Few) X+200 (X),
from which we have (5.10).
Similarly, we can prove (5.11).

LEMMA 5.5. Under the same assumptions as those in Lemma 5.1, we have
(5. 12) (7yw) (fY, X) =Fzw) (FX, Y) =—e(X) (Fye) Z+e(Y) (Fxe) Z
—~u(X) Pyu) Z+u(Y) Pyu) Z—o(X) Fyv) ZHo(Y) (Fyv) Z.

Proof. Since w(X,Y) is given by
2w (X, Y) = (Fxu) Y— (Fyu) X,
we have dw=0, that is,
(5.13) Tw) (X, V) + (Fxw) (Y, 2) + (Fyw) (Z, X) =0.
‘On the other hand, computing g(S(X, Y), Z) =0, we obtain
7 ryw) (Y, Z) — Piyw) (X, Z) +w 7y X, Z) —w ((7xf) Y, Z)
+2de(X, Y)e(Z) +2du(X, Y)u(Z) +2dv(X, Y)v(Z) =0,
from which, using (5.13),
= (Pyw) (Z, X} — 7ow) (fX, Y} + (Fxw) (Z, fY) + (7w) (FY, X)
+w((FyA) X Z) —w((Pxf) Y, Z) +2de (X, Y) e (Z) +2du (X, Y)u(Z)
+2dv (X, Y)v(Z) =0,

that is,
Trw (fY, X) - (Fzw) (fX, Y) —Fyw (2, fX) +Fsw(Z, fY) +w (FyZ, £X)
Tw(Z, fWyX)) —wWsZ, fY) —w(Z f(FxY)) +2de(X, Y) e (Z)
+2du (X, Y)u(Z) +2dv (X, Y) v (Z) =0.
Substituting
w(Z fX) =g (X,2) —e(X) e(Z) —u(X)u(Z) —v(X)v(Z),
we find

Fzw) (FY, X) — Zow) (FX, Y) —e(Y) (Fxe) Z+e(X) (Pye) Z—ulY) Wxu) Z
+u(X) (yu) Z—v(Y) (Fyv) Z=0,
which proves (5.12).
LErMMA 5.6. Under the same assumptions as those in Lemma 5.1, we have

(5. 14) (7 u) Y+ (Fyu) Z=—2i0g (Z, Y) +2((Fzu) E+icde (2) ) e (Y),
{5.15) (Fz0) Y+ (Fyv) Z=2ig (Z, Y) +2((F0) E—2e(Z)) e (Y).

Proof. Substituting U for X and using (1.3), we get
(7zw) £Y, U) — (Fow) (fU, Y) =e(Y) (Fre) Z— (1—22) (Fyu) Z
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+u(Y) (Fyu) Z+0(Y) (Fyo) Z,
from which
(5.14) Vaw(fY, Uy —rw(fU, Y) +w((Fzf) U, Y) —w ((Fzf) Y, U}
+e(Y) (Fye) Z— (1—28 (Fye) Z+ulY) Wyu) Z+o(Y) (Puv) Z.
On the other hand, from (1.12) we find

(5. 15) Vo (fY, U)=rw(fU,Y),
and using (1.4)
(5.16) w((Pzf) U, Y)=—gl(fY, W7.f) U)

=g (fY, T V) +ig (fY,7;V) +g(fY, f(7:U))-
Differentiating
g(fU, fY) =—io (fY) =2u(Y)
covariantly, we have
(5.17) w((7zf) Y, U)=—g(fY, WA V) =2 (fY,7; V)~ (7 Y.
Substituting (5.15), (5.16) and (5.17) into (5.14), we have
24T z0) fY+ Fa0) Y+e(Y) (Fze) U—u(Y) Tzt U+v(Y) Pzv) U+ 2Pz ¥
=e(Y) (Fve) Z— (1— 1) (Fyu) Z+u(Y) Puu) Z+olY) (Fuo) Z,
from which
W) fY+ (Fru) Y+ (Fyu) Z+ 2 ({F2u) Y— (Pyu) Z
=e{Y) ({Fye) Z— (7 z¢) U) +u(Y) {(Fyw) Z+ (720 U) +o (Y) (Fov) Z— (7 0) U) ..
or '
220 fY+ ((Pz0) Y+ (Pyu) Z) +24%w (Z, Y)
=e(Y) ((Fve) Z— (P2¢) U) +u(Y) ((Fve) Z+ (722) U) +2¢0 (V) w (U, 2).
Substituting
27 20) fFY=((F0) fY+ Wrv0) Z) + (7 20) fY— T1y0) 2)
= (7 20) fY+ (Pryv) Z+2¢w (Z, £Y),
and (5.10) into the equation above, we get
AP 0) fY+ (Prv0) Z) +22 (g (Y, Z) —e(Y) e(Z) —2(Y) 2(Z) —v(Y) v (Z) }
+ ((F20) Y+ Pya) Z) +27%w (Z, Y)
=e(Y) ((Fye) Z— (7 z¢) U) —2igu(Y) u(Z) +2igv (Y) v (Z),
from which
(5.18) (72 Y+ (Fyu) Z=2((Fz0) fY+ (Pryo) Z) —2202 (2, Y) —22%w (Z, Y)
+21de (Y) e (Z) +elY) ((Fve) Z— (Fze) U).
Similarly, we have
(5.19) T0) Y+ Fyu) Z=2 () fFY+ Fryu) Z) +22g (Z, Y) — 222w (Z, Y)
—22e(Y)e(Z) +e(Y) ((Fve) Z— (P2e) V).
Substituting (5.19) into (5.18) and using (5.10), we obtain
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(5.20)  (1—2) (Wq) Y+ (Fyu) Z) =—22(1— ) g (Z, ¥) — 2230 (Y) v (2)
— 2 (Y) ((Fzu) V+ (Fyu) Z)
+ (1—2%) (Pye) Z— (7z¢) U+ 24ge (Z)) e (Y).
On the other hand, substituting E for Y in(5.18), we get
(5. 21) (Fzu) E4+ (Feu) Z= (Fre) Z— (7ze) U,
and taking account of (5.1),
2du (Z, E) = (7 zu)} E— (I" su) Z=0,
from which, (5.21) is written by

(5. 22) 2 (Vzu) E= (Vue) Z— (Vze) U.
Substituting V for Y in (5.20), we obtain
(5.23) (P zu) V+ (Vyu) Z=—2F v (Z).

Consequently, substituting (5.22) and (5.23) into (5.20), we have (5.14). And
substituting (5.14) into (5.19), we have (5.15).

If we put
(5. 24) e(F,U)=—ioe(Z), e{l;V) =z(Z),
in (5.14) and (5.15), we have respectively
(5. 25) Tau) Y+ (Fyu) Z=—2i0g (Z, Y),
(5. 26) (Fr) Y-+ (Fyu) Z=24g(Z, Y).

Equations (5.25) and (5.26) show that the vector fields U and V" define infinitesimal
conformal transformations respectively.
In this case, using {5.1)and (5.2), we have

(5.27) P Y=—120g(Z,Y) +w(Z,Y),
(5. 28) (F)Y=13g(Z,Y) ~ow(Z, Y).
Thus we have

PROPOSITION 5.7. Let M be a manifold with normal (f, g, e, u, v, 2) -structure satisfying
(5.1), (5.2) and (5.24). If the function i(1—2i° is almost everywhere non-zero, then
the vector fields U and V define infintesimal conformal tsansformations respectively.

86. 0Odd dimensional spheres

We prove

THEOREM 6.1. Let M be a complete manifold with normal (f, g, e, u,v, \-structure
satisfying (5.1), (5.2) and (5.24). If the function i(1-4*) is almost everywhere non-
zero, then M is isometric with an odd dimensional sphere.

Proof. Differentiating (5.7) covariantly, we have
gWyPA),X)=¢ Wyu) X— {Fyv) X
¢ being a constant, from which, using (5.14) and (5.15),
(6.1) gy WA, X)=— (1+¢%) ig (X, Y).
Thus, by means of Obata’s theorem, M is isometric with a sphere.
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Next, we prove

THEOREM 6.2. Let M be a complete manifold with normal (f, g, e %, A —structure
satisfying (5.24) and
6.2 \7xu) Y=w(X,Y).
If 2(1~2?) is almost everywhere non-zero, then M is an odd dimensional sphere.

Proof. Diffrentiating u (U) =1—/% covariantly, we have

(Fyu) U=—7xA,

from which, substituting Y for U in (6.2), we get

(6-3) Fxi=—v(X).

This shows that

(6.4) (Fxv) Y— (Fyov) X=0.
Equation (6.2) shows that

{6.5) xw) Y— (Fyu) X=2w (X, Y).

Equations {6.4) and (6.5) satisfy the equations (5.1) and (5.2) respectively, and
-consequently M is isometric with an odd dimensional sphere.

Bibliography

(1) Blair, D.E., and G.D. Ludden, Hypersurfaces in almost contact manifolds. Tohoku
Math. J. 22 (1969}, 354-362.

{2] Okumura, M., Submanifolds of a Kaehlerian manifold and a Sasakian manifold, Lecture
notes, Michigan (1971).

i(3) S.Sasaki, Oz differentiable manifolds with certain structures which are closely related to
almost contact structure 1, Tohoku Math. J. 12 (1960), 459-476.

‘[4) S. Yamaguchi, Or hypersurfaces in Sasakian manifolds. Kodai Math. Sem. Rep. 21(1969),
64-72.

i(6) K. Yano, On a structure defined by tensor field f of type (1,1} satisfying f°+f=0,
Tensor, New Series, 14 (1963), 99-109.

(6] K. Yano and S. Ishihara, On a problem of Nemizu-Smyth for a normal contact Riemannian
manifold, J. of Differential Geometry 3 (1969}, 45-58.

7] K. Yano and M. Okumura, On (f, g u,v,A) -structures, Kodai Math. Sem. Rep. 22
(1970), 401-423.

Pusan University






