J. Korean Math Soc. Vol. 9, No. 2, 1972

ON CONVERGENCE OF SEMIGROUPS OF OPERATORS IN BANACH SPACES

By KI SIK HA

Let X be a real Banach space. A family $\{T(t); t \ge 0\}$ of operators from a subset X_0 of X into itself is called a semigroup of type ω on X_0 if the following conditions are satisfied:

$$T(0) = I$$
, $T(t+s) = T(t) T(s)$ for $t, s \ge 0$, $\lim_{t \to 0} T(t) x = x$ for $x \in X_0$

and there exists a real number ω such that

(1) $|| T(t) x - T(t) y || \le e^{\omega t} || x - y ||$

for $t \ge 0$ and $x, y \in X_0$. We define the infinitesimal generator A_0 of a semigroup $\{T(t); t \ge 0\}$ of type ω on X_0 by

$$A_0x = \lim_{t \to 0} t^{-1} \{T(t) x - x\}$$

for $x \in X_0$ whenever the right side exists. A subset A of $X \times X$ is said to be in the class $\mathcal{A}(\omega)$, $\omega \geq 0$, if for $0 < \lambda \omega < 1$ and for $[x_k, y_k] \in A$, k=1, 2, we have

(2)
$$|| (x_1 + \lambda y_1) - (x_2 + \lambda y_2) || \ge (1 - \lambda \omega) || x_1 - x_2 ||.$$

We say that A is accretive if $\omega=0$, and in addition, A is m-accretive if $R(I+\lambda A)=X$ for all $\lambda>0$.

Put $J_{\lambda} = (I + \lambda A)^{-1}$ and $A_{\lambda} = \lambda^{-1} (I - J_{\lambda})$ for $\lambda > 0$. The next lemma is well-known:

LEMMA A. Let $A \in \mathcal{A}(\omega)$, $\omega \geq 0$ and let $0 < \lambda \omega < 1$. Then

1) J_{λ} is a function and

$$||J_{\lambda}x-J_{\lambda}y|| \leq (1-\lambda\omega)^{-1}||x-y|| \text{ for } x,y \in D(J_{\lambda}),$$

2) A_{λ} is a function in the class $A\{\omega(1-\lambda\omega)^{-1}\}$ and

$$|AJ_{\lambda}x| \leq ||A_{\lambda}x|| \leq (1-\lambda\omega)^{-1}|Ax|$$
 for $x \in D(J_{\lambda}) \cap D(A)$

where $|Ax| = \inf\{||y||; y \in Ax\}.$

In the previous paper [5] the author proved the following Theorem C with making use of Lemma B.

LEMMA B. Let $A \subseteq A(\omega)$, $\omega \ge 0$ with $R(I + \lambda A) \supseteq \overline{\operatorname{co}D(A)}$ and let $0 \le \lambda \omega \le 1/2$. Then $-A_{\lambda}$ is the infinitesimal generator of a semigroup $\{T_{\lambda}(t); t \ge 0\}$ of type $\omega (1 - \lambda \omega)^{-1}$ on $\overline{\operatorname{co}D(A)}$ which satisfies the following theree conditions:

(i)
$$u_{\lambda}(t) = T_{\lambda}(t) x$$
 for $x \in \overline{\text{co}D(A)}$ is a unique solution of the Cauchy problem

$$\begin{cases} du_{\lambda}(t) / dt + A_{\lambda}u_{\lambda}(t) = 0 \\ u_{\lambda}(0) = x, \end{cases}$$

(ii) Furthermore

Received by the editors Oct 24, 1972

$$||T_{\lambda}(n\lambda)x-J_{\lambda}^{n}x||$$

(3)
$$\leq (1-\lambda\omega)^{-n}e^{n\lambda\omega/(1-\lambda\omega)} \{n^2\lambda^2\omega^2(1-\lambda\omega)^{-2}+n\lambda\omega(1-\lambda\omega)^{-1}+n\}^{1/2} \|J_{\lambda}x-x\|$$

(iii) There exists $h_0>0$ depending on $\lambda>0$ and $x \in co\overline{D(A)}$ such that

(4)
$$||T_{\lambda}(t+h)x-T_{\lambda}(t)x|| \leq he^{\omega t/(1-\lambda \omega)} (||A_{\lambda}x||+1) \text{ for } 0 < h < h_0.$$

Since $(1-s)^{-n} \le e^{2ns}$ for $s \in [0, 1/2]$, (3) implies that

(5) $||T_{\lambda}(n\lambda)x - J_{\lambda}^{n}x|| \leq \sqrt{\lambda}K(t,\lambda,\omega) ||A_{\lambda}x|| \leq \sqrt{\lambda}(1-\lambda\omega)^{-1}K(t,\lambda,\omega) |Ax|$ for n such that $t=n\lambda+\delta$, $0\leq\delta<\lambda$, and for $x\in D(A)$, where

$$K(t, \lambda, \omega) = e^{(2\omega+1/(1-\lambda\omega))t} \{\lambda (\omega^2 t^2 (1-\lambda\omega)^{-2} + \omega t (1-\lambda\omega)^{-1}) + t\}^{1/2}$$

and $K(t, \lambda, \omega)$ is uniformly bounded for $t \in [0, t_0]$ as $\lambda \to 0^+$.

THEOREM C. Let $A \in \mathcal{A}(\omega)$, $\omega \geqslant 0$ with $R(I + \lambda A) \supset \overline{\operatorname{co}D(A)}$ for $0 < \lambda \omega < 1/2$. Then for the semigroup $\{T_{\lambda}(t); t \geqslant 0\}$ in Lemma B, $\lim_{\lambda \to 0^+} T_{\lambda}(t) x$ exists for $x \in \overline{D(A)}$ and $t \geqslant 0$. If we define $T(t) = \lim_{\lambda \to 0^+} T_{\lambda}(t) x$, then the family $\{T(t); t \geqslant 0\}$ is a semigroup of type ω on $\overline{D(A)}$ and for $0 < h < h_0$ and $x \in D(A)$

$$||T(t+h)x-T(t)x|| \leq he^{\omega t}(2|Ax|+1)$$
.

In this paper we consider relations of the convergence of $\{A_n\}$ where $A_n \in \mathcal{A}(\omega_n)$, $\omega_n \ge 0$, the convergence of $\{J_{\lambda,n}\}$ where $J_{\lambda,n} = (I + \lambda A_n)^{-1}$ and the convergence of semigroups given by A_n in the sense of Theorem C in general Banach spaces. In particular we shall show that if functions A and A_n are closed m-accretive then $\lim_{n\to\infty} J_{\lambda,n} = J_{\lambda}$, $\lim_{n\to\infty} T_n(t) = T(t)$ and $\lim_{n\to\infty} A_n = A$ are equivalent when the dual X^* of X is uniformly convex using the following Theorem D where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

THEOREM D. Let A and B be closed m-accretive subsets of $X \times X$ and let $\{T(t); t \ge 0\}$ and $\{S(t); t \ge 0\}$ be semigroups given by A and B in the sense of Theorem C respectively. Then T(t) = S(t) for all $t \ge 0$ implies D(A) = D(B) and A = B when the dual X^* of X is uniorally convex.

Proof. Since X^* is uniformly convex, X is reflexive together with X^* , therefore the Lipschitz continuous X-valued function T(t) x with $x \in D(A)$ in $t \ge 0$ is strongly differentiable at a.e. t in $[0, \infty)$ (see Appendix in [8]). With the closedness and m-accretivity of A, T(t) x is a unique solution of the Cauchy problem

$$\begin{cases} du(t)/dt + Au(t) \equiv 0 \text{ a. e. t in } [0, \infty) \\ u(0)x = x \end{cases}$$

for $x \in D(A)$ (see Theorem II in [1]). Also S(t) x is a unique solution of the Cauchy problem

$$\begin{cases} du(t)/dt + Bu(t) \equiv 0 \text{ a. e. t in } [0, \infty) \\ u(0)x = x \end{cases}$$

for $x \in D(B)$. Hence Corollary 2 in [2] completes the proof.

Now we consider the main theorems.

THEOREM 1. Let $A = \mathcal{A}(\omega)$, $0 \le \omega \le \alpha$ with $R(I + \lambda A) \supset \overline{\operatorname{coD}(A)}$ for $0 < \lambda \omega < 1/2$ and let $A_n = \mathcal{A}(\omega_n)$, $0 \le \omega_n \le \alpha$, $R(I + \lambda A_n) \supset \overline{\operatorname{coD}(A_n)}$ for $0 < \lambda \omega_n < 1/2$. If

(6)
$$\lim_{\lambda \to x} J_{\lambda n} x = J_{\lambda} x \text{ for } x \in \overline{\operatorname{co}D(\Lambda)}$$

and $D(A) \subset D(A_n)$ for every n, then for every $x \in \overline{D(A)}$

$$\lim_{n \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

Proof. By (6) $\lim_{x\to a} A_{\lambda,n} x = A_{\lambda} x$ for $x = \overline{\cot(A)}$, and hence there exists M > 0 such that

$$||A_{\lambda,n}x|| \leq M \text{ and } ||A_{\lambda}x|| \leq M.$$

Choosing the integer m such that $t=m\lambda+h$ and $0 \le h \le \lambda$, we have the estimate for $x \in \overline{D(A)}$

(8)
$$|| T(t) x - T_n(t) x || \leq || T(t) x - J_{\lambda,n}^m x || + || J_{\lambda,n}^m x - T_n(t) ||.$$

We estimate the first term of the left side in (8) as follows.

$$\| T(t) x - J_{1,x}^{m} x \| \leq \| T(t) x - T_{\lambda}(t) x \| + \| T_{\lambda}(t) x - T_{\lambda}(m\lambda) x \|$$

$$+ \| T_{\lambda}(m\lambda) x - J_{\lambda}^{m} x \| + \| J_{\lambda}^{m} x - J_{1,x}^{m} x \|$$

By (4), (5) and (7) we have
$$\|T_{\lambda}(t)x - T_{\lambda}(m\lambda)x\| \le he^{\omega t/(1-\lambda\omega)} (\|A_{\lambda}x\| + 1) \le he^{\omega t/(1-\lambda\omega)} (M+1)$$

and

$$||T_{\lambda}(m\lambda)x-J_{\lambda}^{m}x|| \leq \sqrt{\lambda}K(t,\lambda,\omega) ||A_{\lambda}x|| \leq \sqrt{\lambda}K(t,\lambda,\omega)M.$$

Thus we obtain

(9)
$$||T(t)x-J_{1,*}^{\pi}x||$$

 $\leqslant \parallel T(t) x - T_{\lambda}(t) x \parallel + \lambda e^{\alpha t_0 / (1 - \lambda \alpha)} (M + 1) + \sqrt{\lambda} K(t_0, \lambda, \alpha) M + \parallel J_{\lambda}^{m} x - J_{\lambda, \alpha}^{m} x \parallel$

for $t \in [0, t_0]$. We estimate the second term of the left side in (8) as follows.

$$\| J_{\lambda,n}^{n} x - T_{n}(t) x \|$$

$$\leq \| J_{\lambda,n}^{n} x - J_{\lambda,n}^{n} J_{\lambda,n} x \| + \| J_{\lambda,n}^{n} J_{\lambda,n} x - T_{\lambda,n}(m\lambda) J_{\lambda,n} x \|$$

$$+ \| T_{\lambda,n}(m\lambda) J_{\lambda,n} x - T_{\lambda,n}(t) J_{\lambda,n} x \| + \| T_{\lambda,n}(t) J_{\lambda,n} x - T_{\lambda,n}(t) x \|$$

$$+ \| T_{\lambda,n}(t) x - T_{n}(t) x \| .$$

Using Lemma A, (1), (5) and (7) we get

$$\|J_{1,n}^{m}x - J_{1,n}^{m}J_{\lambda,n}x\| \leqslant \lambda (1 - \lambda\omega_{n})^{-m} \|A_{\lambda,n}x\| \leqslant \lambda (1 - \lambda\omega_{n})^{-m}M,$$

$$\|J_{1,n}^{m}J_{\lambda,n}x - T_{\lambda,n}(m\lambda)J_{\lambda,n}x\| \leqslant \sqrt{\frac{1}{\lambda}} (1 - \lambda\omega_{n})^{-1}K(t,\lambda,\omega_{n}) \|A_{n}J_{\lambda,n}x\|$$

$$\leqslant \sqrt{\frac{1}{\lambda}} (1 - \lambda\omega_{n})^{-1}K(t,\lambda,\omega_{n}) \|A_{\lambda,n}x\|$$

$$\leqslant \sqrt{\frac{1}{\lambda}} (1 - \lambda\omega_{n})^{-1}K(t,\lambda,\omega_{n}) M,$$

$$\parallel T_{\lambda,n}(m\lambda) J_{\lambda,n} x - T_{\lambda,n}(t) J_{\lambda,n} x \parallel \leq \delta e^{\omega_n t / (1 - \lambda_{\omega,n})} (2 |A_n J_{\lambda,n} x| + 1)$$

$$\leq \lambda e^{\omega_n t / (1 - \lambda_{\omega,n})} (2M + 1)$$

and

$$||T_{\lambda,n}(t)J_{\lambda,n}x-T_{\lambda,n}(t)x|| \leq \lambda e^{\omega_n t/(1-\lambda\omega_n)}||A_{\lambda,n}x|| \leq \lambda e^{\omega_n t/(1-\lambda\omega_n)}M.$$

Thus we have

(10)
$$||J_{\lambda,n}^{m}x-T_{n}(t)x|| \leq \lambda (1-\lambda\alpha)^{-m}M+\sqrt{\lambda}K(t_{0},\lambda,\alpha)M$$

$$+\lambda e^{\alpha t_0/(1-\lambda \alpha)} (2M+1) + \lambda e^{\alpha t_0/(1-\lambda \alpha)} M + \parallel T_{\lambda,n}(t) x - T_n(t) x \parallel$$

for $t \in [0, t_0]$. It follows from (9) and (10) that

for $x \in \overline{D(A)}$ and $t \in [0, t_0]$. First for each $\varepsilon > 0$ we fix $\lambda > 0$ sufficiently small such that $||T(t)x - T_{\lambda}(t)x|| < \varepsilon/5$,

$$\{\lambda (1-\lambda \alpha)^{-m}+2\sqrt{\lambda}K(t_0,\lambda,\alpha)+\lambda e^{\alpha t_0/(1-\lambda \alpha)}\}M < \varepsilon/5,$$

 $2\lambda e^{\alpha t_0/(1-\lambda \alpha)}(2M+1)<\varepsilon/5$

and

$$||T_{\lambda,n}(t)x-T_n(t)x|| < \varepsilon/5$$

for every n. Next we choose n sufficiently large such that

$$||J_{\lambda}^{m}x-J_{\lambda,n}^{m}x|| < \varepsilon/5.$$

Thus it follows that for $x \in \overline{D(A)}$

$$\lim_{n \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$.

THEOREM 2. Let $A_n \in \mathcal{A}(\omega_n)$, $0 \le \omega_n \le \alpha$, $R(I + \lambda A_n) \supset_{\overline{\text{co}D}(A_n)} for <math>0 < \lambda \omega_n < 1/2$. If $D \subset D(A_n)$ for every n and $\lim_{n \to \infty} J_{\lambda,n}$ x exists in D for $x \in \overline{\text{co}D}(A)$ and some $\lambda > 0$, we denote the limit by $J_{\lambda}x$, then there exists $A \in \mathcal{A}(0)$ such that $J_{\lambda} = (I + \lambda A)^{-1}$ and $R(I + \lambda A) \supset_{\overline{\text{co}D}} for \lambda > 0$. Moreover for every $x \in \overline{D(A)}$

$$\lim_{t \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T_n(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

Proof. The limit $\lim_{x\to\infty} J_{\lambda n}x$ exists in D for all $\lambda>0$ (see [4]). If we define $A\subset X\times X$ by

$$\bigcup_{\lambda>0}\{[J_{\lambda}x,\ \lambda^{-1}(I-J_{\lambda}x)\,];\ x\in\overline{\mathrm{co}D}\}$$

then clearly $A \in \mathcal{A}(0)$. For $x \in \overline{\text{co}D}$, from

$$\lambda^{-1}(I-J_{\lambda}) x \in AJ_{\lambda}x$$

we have $x \in (I + \lambda A) J_{\lambda} x \subset R (I + \lambda A)$, that is,

$$(13) \qquad \overline{\operatorname{co}D} \subset R(I+\lambda A).$$

Also by (12) we have $J_{\lambda}x = (I + \lambda A)^{-1}x$ for $x = \overline{\operatorname{co}D}$. For y = D(A), there exists $x = \overline{\operatorname{co}D}$ such that $y = J_{\lambda}x = D$, and hence $D(A) \subset D$. By (13) $\overline{\operatorname{co}D(A)} \subset R(I + \lambda A)$ for $\lambda > 0$. Therefore it follows from Theorem 1 that (11) holds true.

THEOREM 3. Let A be a function in the class $\mathcal{A}(\omega)$, $0 \le \omega \le \alpha$ with $R(I+\lambda A) \supset co\overline{D(A)}$ for $0 \le \lambda \omega \le 1/2$ and let A_n be a function in the class $\mathcal{A}(\omega_n)$, $0 \le \omega_n \le \alpha$ such that $R(I+\lambda A_n) \supset \overline{coD(A_n)}$ for $0 \le \lambda \omega_n \le 1/2$. If $D(A) \subset D(A_n)$ for every n and $\lim_{n \to \infty} A_n x = Ax$ for

 $x \in D(A)$ then for every $x \in \overline{D(A)}$

$$\lim_{n \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

Proof. For $x = \overline{\text{co}D(A)}$ there exists y = D(A) such that $x = y + \lambda Ay$ and $\lim_{n \to \infty} A_n y = Ay$. We have the estimate

Thus $\lim_{x\to\infty} J_{\lambda,n}x = J_{\lambda}x$ for $x \in \overline{\operatorname{co}D(A)}$. From Theorem 1, (14) holds true.

COROLLARY 4. Let A_n be a function in the class $A(\omega_n)$, $\omega_n \ge 0$ such that $R(I+\lambda A_n) \supset \overline{\operatorname{coD}(A_n)}$ for $0 < \lambda \omega_n < 1/2$. Supposing that $\lim_{n \to \infty} \omega_n$ exists and $\lim_{n \to \infty} A_n x$ exists for $x \in E$. $(\subseteq \bigcap_{n=1}^{\infty} D(A_n))$ we denote the limits by ω and Ax for $x \in E$ respectively. If D(A) = D. (A_n) for every n then $A \subseteq A(\omega)$, $\omega \ge 0$ and $R(I+\lambda A) \supset \overline{\operatorname{coD}(A)}$ for $0 < \lambda \omega < 1/2$. Moreover for every $x \in \overline{D(A)}$.

$$\lim_{n \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0,\infty)$, where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

Proof. Since $A_n \in \mathcal{A}(\omega_n)$, for $x_1, x_2 \in D(A)$ we have

$$\| (x_1 + \lambda A_n x_1) - (x_2 + \lambda A_n x_2) \| \ge (1 - \lambda \omega_n) \| x_1 - x_2 \|.$$

As $n \to \infty$

$$\| (x_1 + \lambda A x_1) - (x_2 + \lambda A x_2) \| \ge (1 - \lambda \omega) \| x_1 - x_2 \|$$
.

Thus $A = A(\omega)$, $\omega > 0$. Since $R(I + \lambda A_n) = \overline{\cot D(A_n)} = \overline{\cot D(A)}$, for $z = \overline{\cot D(A)}$ there exists $x = D(A_n)$ such that $z = x + \lambda A_n x$. As $n \to \infty$ there exists x = D(A) such that $z = x + \lambda A_n x$. $z = x + \lambda A_n x$. As $z \to \infty$ there exists z = D(A) such that $z = x + \lambda A_n x$. Therefore by Theorem 3, (16) holds true.

THEOREM 5. Let A be a function in the class $A(\omega)$, $0 \le \omega \le \alpha$ with $R(\overline{I+\lambda}A) \supset coD(A)$ for $0 < \lambda \omega < 1/2$. Let A_n be a function in the class $A(\omega_n)$, $0 \le \omega_n \le \alpha$ for each n such that $R(I+\lambda A_n) \supset \overline{coD(A_n)}$ for $0 < \lambda \omega_n < 1/2$. If $\lim_{n \to \infty} A_n x = Ax$ for $x \in D(A)$ and $D(\overline{A}) \subset D(A_n)$ for every n, then $\overline{A} \in A(\omega)$, $0 \le \omega \le \alpha$ with $R(I+\lambda A) \supset \overline{coD(A)}$ for $0 < \lambda \omega < 1/2$. Moreover for $x \in \overline{D(A)} = \overline{D(A)}$

$$\lim_{n\to\infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and \bar{A} in the sense of Theorem C respectively.

Proof. For $z \in \overline{\operatorname{co}D(A)} \subset \overline{R(I+\lambda A)}$ there exists $z_n \in R(I+\lambda A)$ and $x_n \in D(A_n)$ such that

(18)
$$z_n = x_n + \lambda A x_n \text{ and } \lim_{n \to \infty} z_n = z.$$

Since $A \in \mathcal{A}(\omega)$, we have for x_n , $x_m \in D(A)$

$$||(x_n+\lambda Ax_n)-(x_m+\lambda Ax_m)||\geq (1-\lambda\omega)||x_n-x_m||,$$

and hence $\lim_{x\to\infty} x_n$ exists, we denote the limit by x. By (18) $\lim_{x\to\infty} Ax_n$ exists and it equals to $\bar{A}x$ for $x\in D(\bar{A})$. As $n\to\infty$ we have from (18) $z=x+\lambda\bar{A}x\in R(I+\lambda\bar{A})$. Thus $\overline{\cot D(\bar{A})}\subset R(I+\lambda\bar{A})$. Since $\overline{\cot D(\bar{A})}=\overline{\cot D(\bar{A})}$ we obtain $R(I+\lambda\bar{A})=\overline{\cot D(\bar{A})}$ for $0<\lambda\omega<1/2$. Since $A\in\mathcal{A}(\omega)$, we get for $x_{1,n}, x_{2,n}\in D(A)$ such that $\lim_{x\to\infty} x_{1,n}=x_1$ and $\lim_{x\to\infty} x_{2,n}=x_2$. $\|(x_{1,n}+\lambda Ax_{1,n})-(x_{2,n}+\lambda Ax_{2,n})\| \ge (1-\lambda\omega)\|x_{1,n}-x_{2,n}\|$.

As $n \rightarrow \infty$

$$\parallel (x_1 + \lambda \bar{A}x_1) - (x_2 + \lambda \bar{A}x_2) \parallel \geqslant (1 - \lambda \omega) \parallel x_1 - x_2 \parallel$$

for $x_1, x_2 \in D(\bar{A})$, and hence $\bar{A} \in \mathcal{A}(\omega)$. Set $\bar{J}_{\lambda} = (I + \lambda \bar{A})^{-1}$ and $\bar{A}_{\lambda} = \lambda^{-1} (I - \bar{J}_{\lambda})$. Since $\bar{A}_{\lambda}x \in \bar{A}\bar{J}_{\lambda}x$, there exists $y_m \in D(A)$ such that $\lim_{n \to \infty} y_m = \bar{J}_{\lambda}x$ and $\lim_{n \to \infty} Ay_m = \bar{A}_{\lambda}x$. Therefore we obtain $\lim_{n \to \infty} (y_m + \lambda Ay_m) = x$. We have the estimate

$$||J_{\lambda,n}x-\bar{J}_{\lambda}x|| \geqslant ||J_{\lambda,n}x-y_m|| + ||y_m-\bar{J}_{\lambda}x||$$

for $x = \overline{\operatorname{co}D(A)}$. Since $A_n = A(\omega_n)$, $0 \le \omega_n \le \alpha$,

$$|| J_{\lambda,n}x - y_m || \leq (1 - \lambda \omega_n)^{-1} || (J_{\lambda,n}x + \lambda A_n J_{\lambda,n}x) - (y_m + \lambda A_n y_m) ||$$

$$\leq (1 - \lambda \alpha)^{-1} || x - (y_m + \lambda A_n y_m) ||$$

$$\leq (1 - \lambda \alpha)^{-1} \{ || x - (y_m + \lambda A_n y_m) || + \lambda || A y_m - A_n y_m || \} .$$

First, for every $\varepsilon > 0$, we fix m sufficiently large such that

$$(1-\lambda\alpha)^{-1} \parallel x - (y_m + \lambda A y_m) \parallel < \varepsilon/3, \quad \parallel y_m - \bar{J}_{\lambda}x \parallel < \varepsilon/3.$$

Next we choose n sufficiently large such that

$$\lambda (1-\lambda \alpha)^{-1} ||Ay_m-A_ny_m|| < \varepsilon/3.$$

Thus it follows that for $x \in \overline{\text{co}D(A)}$, $\lim_{\lambda \to \infty} J_{\lambda,n} x = \overline{J}_{\lambda} x$. Hence by Theorem 1, (17) holds true.

COROLLARY 6. Let A_n be a function in the class $A(\omega_n)$, $0 \le \omega_n \le \alpha$ such that $R(I + \lambda A_n) \to \overline{\operatorname{co}D(A_n)}$ for $0 < \lambda \omega_n < 1/2$ and $\lim_{n \to \infty} \omega_n = \omega$ exists. If $\lim_{n \to \infty} A_n x$ exists for $x \in E$ ($\subset \bigcap_{n=1}^{\infty} D(A_n)$) we denote the limit by Ax for $x \in E$, and if $D(A) = D(A_n)$ for every n, then A and A are in the class $A(\omega)$, $0 \le \omega \le \alpha$ with $A(I + \lambda A) \to \overline{\operatorname{co}D(A)}$ and $A(I + \lambda A) \to \overline{\operatorname{co}D(A)}$ for $0 < \lambda \omega < 1/2$. Moreover for every $x \in \overline{D(A)}$

$$\lim T_{n}(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and \overline{A} in the sense of Theorem C respectively.

Proof. Since $A_n \in \mathcal{A}(\omega_n)$ we obtain for $x_1, x_2 \in D(A) = D(A_n)$

$$||(x_1+\lambda A_n x_1)-(x_2+\lambda A_n x_2)|| \ge (1-\lambda \omega_n)||x_1-x_2||.$$

As $n \rightarrow \infty$ we have

$$|| (x_1 + \lambda A x_1) - (x_2 + \lambda A x_2) || \ge (1 - \lambda \omega) || x_1 - x_2 ||.$$

Thus $A \in \mathcal{A}(\omega)$, $0 \le \omega \le \alpha$. From $R(I + \lambda A_n) \supset \overline{\operatorname{co}D(A_n)} = \overline{\operatorname{co}D(A)}$, for $z \in \overline{\operatorname{co}D(A)}$ there exists $x \in D(A) = D(A_n)$ such that $z = x + \lambda A_n x$. As $n \to \infty$ we have $z = x + \lambda A_n x \in R(I + \lambda A)$. Thus $R(I + \lambda A) \supset \overline{\operatorname{co}D(A)}$ for $0 < \lambda \omega < 1/2$, and hence $\overline{A} \in \mathcal{A}(\omega)$, $0 \le \omega < \alpha$. Therefore by Theorem 5 the proof is complete.

As an application of Corollary 4 we consider the following.

THEOREM 7. Let S_n be an operator from a closed convex subset X_0 of X into itself such that

$$||S_n x - S_n y|| \leq e^{\omega h x} ||x - y||$$
 for $x, y \in X_0$

where $\omega \geqslant 0$ and $h_n > 0$, $h_n \to 0^+$ as $n \to \infty$. Suppose that $\lim_{n \to \infty} h_n^{-1}(I - S_n) x$ exists for every $x \in X_0$, we denote the limit by Ax. If $D(\bar{A}) \subset X_0$ and $\overline{R(I + \lambda A)} \supset \overline{\operatorname{co} D(A)}$ for $0 < \lambda \omega < 1/2$, then $\bar{A} \in \mathcal{A}(\omega)$ and \overline{for} every $x \in D(A)$,

$$T(t) x = \lim_{n \to \infty} \left(I + \frac{t}{n} \bar{A} \right)^{-n} x$$

uniformly for t in every bounded interval of $[0, \infty)$ where $\{T(t); t \ge 0\}$ is the semigroup given by \tilde{A} in the sense of Theorem C.

Proof. Put
$$A_n = h_n^{-1} (I - S_n)$$
, then $D(A_n) = X_0$. For $x_1, x_2 \in D(A)$,

$$\| (x_1 + \lambda A_n x_1) - (x_2 + \lambda A_n x_2) \|$$

$$\ge \| (1 + \lambda h_n^{-1}) (x_1 - x_2) \| - \lambda h_n^{-1} \| S_n x_1 - S_n x_2 \|$$

$$\ge \{1 - \lambda h_n^{-1} (e^{\omega h_1} - 1) \} \| x_1 - x_2 \| .$$

Set $\omega_n = h_n^{-1} (e^{\omega h_n} - 1)$. Then

(19)
$$|| (x_1 + \lambda A_n x_1) - (x_2 + \lambda A_n x_2) || \geqslant (1 - \lambda \omega_n) || x_1 - x_2 ||,$$

and hence $A_n = \mathcal{A}(\omega_n)$ and $\lim_{n \to \infty} \omega_n = \omega$. As $n \to \infty$ in (19) we have

$$||(x_1+\lambda Ax_1)-(x_2+\lambda Ax_2)|| \geqslant (1-\lambda \alpha)||x_1-x_2||.$$

Thus $A = A(\omega)$, and since $\overline{R(I+\lambda A)} \supset \overline{\operatorname{co}D(A)}$ for $0 < \lambda \omega < 1/2$, we obtain $\overline{A} = A(\omega)$ and $R(I+\lambda \overline{A}) \supset \overline{\operatorname{co}D(A)} = \overline{\operatorname{co}D(\overline{A})}$ as in the proof of Theorem 5. We shall show that $R(I+\lambda \overline{A}_n) \supset \overline{\operatorname{co}D(A_n)} = X_0$ for sufficiently small $\lambda > 0$. Let $z = X_0$. We define a mapping K from X_0 into itself by

(20)
$$Kx = (1 + \lambda/h_n)^{-1} z + \lambda h_n^{-1} (1 + \lambda/h_n)^{-1} S_n x.$$

For x_1 , $x_2 \equiv X_0$, we have

$$|Kx_1-Kx_2| \leq \lambda h_n^{-1} e^{\omega h_n} (1+\lambda/h_n)^{-1} ||x_1-x_2||$$

that is, K is a strict contraction for sufficiently small $\lambda > 0$. Hence there exists $x = X_0$ such that Kx = x. By (20)

$$x = (1 + \lambda/h_n)^{-1}z + \lambda h_n^{-1} (1 + \lambda/h_n)^{-1} S_n x,$$

$$z = x + \lambda A_n x \in R (I + \lambda A_n).$$

Thus $R(I+\lambda A_n) \supset \overline{\operatorname{co}D(A_n)}$ for sufficiently small $\lambda > 0$. It follows from Theorem 5 that for every $x \in \overline{D(A)}$

$$\lim_{n \to \infty} T_n(t) x = T(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$, where $\{T_n(t); t \ge 0\}$ is a semigroup given by A_n in the sense of Theorem C. For every $x \in \overline{D(A)} = \overline{D(A)}$ we have the estimate

$$|| T(t) x - \bar{J}^{n}_{t/n} x || \leq || T(t) x - T_{m}(t) x || + || T_{m}(t) x - T_{t/n,m}(t) x || + || T_{t/n,m}(t) x - \bar{J}^{n}_{t/n,m} x || + || J^{n}_{t/n,m} x - \bar{J}^{n}_{t/n,n} x || .$$

By (5) we have

$$||T_{t/n,m}(t) x - J_{t/n,m}^{*}x|| \leq \sqrt{t/n} K(t,t/n,\omega) ||A_{t/n,m}x|| \leq \sqrt{t_0/n} K(t_0,t_0/n,\omega) M.$$

Let $t \in [0, t_0]$. First, for every $\varepsilon > 0$ we fix m sufficiently large such that

$$||T(t)x-T_m(t)x|| < \varepsilon/4$$

and

$$||J_{t/n,m}^n x - \bar{J}_{t/n}^n x|| < \varepsilon/4$$

for every n. Next, we choose n sufficiently large such that

$$||T_m(t)x-T_{t/n,m}x|| < \varepsilon/4$$

and

$$\sqrt{t_0/n} K(t_0, t_0/n, \omega) M < \varepsilon/4.$$

Accordingly for every $x \in \overline{D(A)}$

$$T(t) x = \lim_{n \to \infty} (I + t/n\tilde{A})^{-n}$$

uniformly for t in every bounded interval of $[0, \infty)$.

THEOREM 8. Let X^* be uniformly convex and let A_n and A be closed m-accretive functions. If $D(A_n) = D(A)$,

$$\lim_{t \to \infty} T_n(t) x = T(t) x$$

for $x \in \overline{D(A)}$ and $\lim_{n \to \infty} A_n x$ exists for $x \in D(A)$ then $\lim_{n \to \infty} A_n x = Ax$ for $x \in D(A)$, where $\{T_n(t); t \geqslant 0\}$ and $\{T(t); t \geqslant 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively.

Proof. Put $\lim_{t\to\infty} A_n x = Bx$ for $x \in D(B) = D(A)$, then B is closed m-accretive. Let $\{S(t): t \ge 0\}$ be a semigroup given by B in the sense of Theorem C. By Corollary 4 for every $x \in \overline{D(A)}$

(22)
$$\lim_{t \to \infty} T_n(t) x = S(t) x$$

uniformly for t in every bounded interval of $[0, \infty)$. By (21) and (22) we have for $x \in \overline{D(A)} = \overline{D(B)}$, T(t) = x = S(t) x. It follows from Theorem D that Ax = Bx for $x \in D(A) = D(B)$. Hence we obtain $\lim_{t \to \infty} A_n x = Ax$ for $x \in D(A)$.

REMARK. Let X be a Banach space the dual of which is uniformly convex and let A and A_n be closed m-accretive functions. Put $J_{\lambda} = (I + \lambda A)^{-1}$ and $J_{\lambda,n} = (I + \lambda A_n)^{-n}$. Suppose that $\{T_n(t); t \ge 0\}$ and $\{T(t); t \ge 0\}$ are semigroups given by A_n and A in the sense of Theorem C respectively. By Theorem 1, Theorem 8 and (15), the following: 1), 2) and 3) are equivalent:

- 1) $\lim_{n\to\infty} J_{\lambda,n}=J_{\lambda}$,
- 2) $\lim_{t\to\infty} T_n(t) = T(t)$ uniformly for $t\in[0,t_0]$,
- 3) $\lim_{n\to\infty} A_n = A$.

References

- [1] M.G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, to appear.
- [2] H. Brezis, On a problem of T. Kato, to appear.
- [3] H. Brezis and A. Pazy, Convergence and approximation of semigroups on nonlinear operators in Banach spaces, to appear.

- [4] K.S. Ha, Convergence of nonlinear semigroups and approximation schemes to well-posed Cauchy problem in Banach spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971) 337 —350.
- [5] K.S. Ha, On generation of semigroups of operators in Banach spaces, to appear.
- [6] E. Hille and R. S. Phillips, Functional analysis and semigroups, American Math. Soc. 1957.
- [7] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966.
- [8] Y. Komura, Nonlinear semigroups in Hilbert space, Jour. Math. Soc. Japan 19 (1967) 493-507.
- [9] I. Miyadera, On the convergence of a sequence of nonlinear semigroups (in Japanese), Gakujutsu-Kenkyu, Fac. of Education, Waseda Univ. 18 (1969) 45-55.
- [10] I. Miyadera, On the convergence of nonlinear semigroups, Tôhoku Math. Jour. 21 (1969) 221-236.
- [11] I. Miyadera, On the convergence of nonlinear semigroups II, Jour. Math. Soc. Jap. 21 (1969) 403-412.
- [12] I. Miyadera and S. Oharu, Approximation of semigroups of nonlinear operators, Tôhoku Math. Jour. 22 (1970) 24-47.
- [13] K. Yosida, Functional analysis, Springer-Verlag 1968.

Pusan University