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ON CONVERGENCE OF SEMIGROUPS OF OPERATORS
IN BANACH SPACES

By KI SIK HA

Let X be a real Banach space. A family {T(t); t>O} of operators from a subset Xo
-of X into itself is called a semigroup of type w on Xo if the following conditions are
satisfied:

T(O) =1, T(t+s) =T(t) T(s) for t, s>O,

!~ T (t) x=x for XEXo

and there exists a real number w such that
(1) 11 T(t)x-T(t)y 11 ~ewt 11 x-y 11

for t?:O and x,yEXo. We define the infinitesimal generator Ao of a semigroup {T(t);
t>O} of type w on Xo by

AoX=¥~rl{T(t) x-x}

for XEXo whenever the right side exists. A subset A of X x X is said to be in the class
,4(w),w>O. if for O<;.w<l and for [x., YkJEA,k=1,2, we have
(2) 11 (Xl+AY1)-(X2+AY2) 11 > (l-).w) IIx1-x211.
We say that A is accretive if w=O. and in addition, A is m-accretive if R (1+AA) = X
for all A>O.

Put J,l=(1+).A)-1 and A.=A-1(1-J,l) for A>O. The next lemma is well-known:

LEMMA A. Let AE,4 (w) ,w>O and let O<AW<l. Then
1) J,l is a function and

11 J,lX-JAY 1I ~ (1- AW) -1 11 x- y I1 for x, yED (J,l) ,

2) A,l is a function in the class .,4 {w (1- ).w) -1} and
IAJ,lxl<[IA.x[!~(1-.?w)-1IAxlfor xED(J,l) nD(A)

where IAx I =inf { 11 y 11 ; yEAx}.

In the previous paper [5J the author proved the following Theorem C with making
use of Lemma B.

LE\IMA B. Let Ac.,4 (w), w>O with R (1+AA) =.J coD (A) and let O<).w<1/2. Then
- A,l is the infinitesimal generator of a semigroup {T,l (t) ; t>O} of type w (1- .?w) -1 on
coD (A) which satisfies the following theree conditions:

(i) U,l (t) =T,l (t) x for xEcoD (A) is a unique solution of the Cauchy problem

[
du. (t) /dt +A.u,l (t) =0

U,l(O) =x,
(ii) Furthermore
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11 T;. (nA) x-J;.nx 11

(3) ~ (l-Aw) -nen;.",/<l-;.w) {n2A2w2(1-Aw)-2+nAw (l-Aw) -l+n}1/2 ii J;.x-x 11_

(iii) There exists ho>O depending on A>O and xEcoD (A) such that
(4) Jl T;. (t+h) x- T;. (t) x 11 ~hewt/Cl-J.",) (11 A;.x 11 +1) for O<h<ho.

Since (1- s) -n~e2ns for SE [0, 1/2J, (3) implies that

(5) 11 T;. (nA) x-J;.nx !I ~ ..,IJ:K (t, A, w) 11 A;.x 11 ~ v'J: (l-Aw) -lK (t, A, w) lAx 1

for n such that t=nA+0, O~O<A, and for xED (A), where
K (t, A, (v) =eC2w+1/CHw))t {A (w2t2(1-AW) -2+ wt (1- AW) -1) +t} 1/2

and K (t, A, w) is uniformly bounded for tE[O, toJ as ;.~O+.

THEOREM C. Let AErJ(w), w?,O with R(I+AA):=JcoD(A) for 0<2w<1I2. 'fhen for

the semigroup {T;. (t) ; t;?:O} in Lemma B, !~ T;. (t) x exists for XED (A) and t;;?O.

If we define T(t) x=V~ T;. (t) x, then the family {T (t}; t;;?O} is a semigroup of type

w on D (A) and for O<h<ho and xED (A)

11 T(t+h)x-T(t)xll~hewt(2IAxl+1).

In this paper we consider relations of the convergence of {An} where AnEfI (wn) ,Wn

?'O, the convergence of {J;',n} where J;',n= (I+AAn ) -1 and the convergence of semigroups
given by An in the sense of Theorem C in general Banach spaces. In particular we

shall show that if functions A and An are closed m-accretive then ~ J;'.n=J;.,

~~ Tn(t) =T(t} and !it.I2 An=A are equivalent when the dual x* of X is uniformly

convex using the following Theorem D where {Tn (t); t;;?O} and {T(t); t;;?O} are
semigroups given by An and A in the sense of Theorem C respectively.

THEOREM D. Let A and B be closed m-accretive subsets of Xx X and let {T (t) ; t;;?O}
and {S (t) ;t?,O} be semigroups given by A and B in the sense of Theorem C respectively.
Then T(t) =S (t) for all t;;?O implies D (A) =D (B) and A=B when the dual X* of
X is uniormly convex.

Proof. Since X* is uniformly convex, X is reflexive together with X*, therefore the
Lipschitz continuous X-valued function T(t) x with x=.D (A) in t?,O is strongly differen­
tiable at a. e. t in [0, =) (see Appendix in [8J). With the cIosedness and m-accretivity
of A, T (t) x is a unique solution of the Cauchy problem

{
du (t) / dt+ Au (t) 30 a. e. t in [0, =)
u (O) x=x

for xED (A) (see Theorem IT in [lJ). Also S (t) x is a unique solution of the Cauchy

problem

{
du (t) / dt+ Bu (t) 30 a. e. t in [0, =)
u (0) x=x

for XED (B). Hence Corollary 2 in [2J completes the proof.
Now we consider the main theorems.

THEOREM 1. Let AErJ (w), O~w0t with R (I+AA) :=JcoD (A) for 0<;'w<1/2 and let.

AnErJ (wn), O~wn~a, R (I+AAn) :=JcoD (An) for 0<':;wn<1I2. If



On convergence of semigroups of operators in Banach spaces 93

(6)

and D (A) cD (An)

v~ J),nx=J).x for xEcoD (A)

for every n, then for every xED (A)

limT (t)x=T(t)x
...... "" n

uniformly for t in every bounded inter'val of [0, co) where {T" (t) ;t?O} and {T(t) ;t>O}

are semigroups given by An and A in the sense of Theorem C respectively.

Proof. By (6) 1.i~A;,nx=A).x for x '== coD (A), and hence there exists M>O such that

(7) 11 A),nx 11 ~M and 11 A)x 11 ::;M.

Choosing the integer m such that t=mA+h and O<h<i., we have the estimate for
xED(A)

(8) \1 T (t) x- T n(t) xli <: 11 T(t) x-J7,.x \\ -:- 11 .J;, ,x- T n(t) 11.

We estimate the first term of the left side in (8) as follows.

11 T(t) x-J7,.x 11 ~ 11 T(t) x- T). (t) xII + Ii T; (t) x- T; (mA) xII
+ 11 T) (mA) x-J)mx 1I --\- I1 J;m,r-J;,.x 11

By (4), (5) and (7) we have
I! T). (t) x- T). (mA) x 11 ~hewti(l-).w) ( 11 A)x 11 +1) ~ heet / II -;"J (M+ 1)

and

11 T). (mi,) x-J)mx 11 <.vIK (t, A, 01) 11 A;x I! ~ .;7K (t, A, (0) M.

Thus we obtain

(9) 11 T(t) x-Ji..x 11

~ 11 T(t) x-T). (t)x 11 +2e"t,/Cl-)''') (M+1) + .;J:K(to, i., a)M+ 11 J;x-J;,.x 11

for t E =0, t o~. We estimate the second term of the left side in (8) as follows.
it J;,.x- T n (t) xii

< 1\ J;,.x-J7,.J;',nx [I + 11 J;.• J),nx - T;.n (m,:,) J;,n x li

+ 11 T).,n (mA) J),nx- T).,n (t) J).,nx 11 + 11 T;,,, (t) J;,nx-- T;.n (t) xii

+ 11 T),n (t) x- T n (t) x 11.

Vsing Lemma A, (1), (5) and (7) we get
!I J;, ,x-J;, .J).,nx 11 ~A (1- AWn) -m il A).,nx i! ::- i, (1-- /.(",,) -mM,
II J;"J)nX- T).,n (mA) J..nx 11 ~.;-; (1- A(I),,) -IK (t, i., (')n) IAnJ).,nxl

< .;-y (1- AWn) -1K (t, A, W n) 11 A;',nx I!

<.; ;. (l-AWn)-lK (t, A, W n) M,

I1 7';,n (mA) J).,nX- T).,n (t) JJ..nx 11 <oew.ti(l-;u..) (2\ AnJinx I +1)
<}.ew.fI(H",J (2M+1)

and

I! TJ.. n(t) J)..nx- T),n (t) x 11 <}.e",·tl (I-)",J 11 A;,nx 11 < i,e''':' (1-).",.)M.

Thus we have

{1O) 11 J;"x- T n(t)x 11 <A (I-Aa) -mM+ ';J:K(to, i" a) M
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+ Ae"t,/o-"a) (2M+ 1) + Ae"t/(H«)M + 11 T ...n(t) x- T n(t) xII

for tE [0, toJ. It follows from (9) and (10) that

11 T (t) x- T n (t) x l/
~ 11 T (t) x- T .. (t) xII + fA (1- Aa) -m+2fiK (to, A, a) +Ae«t./(H,,)} M
+ 11 J ..mx-J':.•x l/ +2;1e«t,/Cl-"«) (2M+ 1) + 11 T ...n(t) x- T n(t) x 11

for xED (A) and tE [0, toJ. First for each e>O we fix A>O sufficiently small such that
11 T (t) x- T .. (t) x 11 <e/5,

fA (I-Aa) -m+2fiK(to, A, a) +Ae«t./(I-"«)}M<e/5,
2Ae«t,/o-..,,) (2M+ 1) <e/5

and

11 TJ..n (t) x- Tn(t) x 11 <c/5
for every n. Next we choose n sufficiently large such that

11 JJ.mx-Ji.•x l/ <e/5.

Thus it follows that for xED (A)

~~Tn (t) x=T (t) x
uniformly for t in every bounded interval of [0, 00).

THEOREM 2. Let AnEr;l (wn), O~wn~a, R (I+.:lAx) =>coD (An) for 0<Awn<1I2. If

DcD (An) for every n and !i~ hn x exists in D for xEcoD (A) and some A>O, we

denote the limit by J..x, then there exists AEr;l (0) such that J ..= (1+ AA) -1 and R (1+

AA) =>coD for ;1>0. Moreover for every xED (A)

(11) !~ Tn(t)x=T(t)x

uniformly for t in every bounded interval of [0,00) where {Tn(t); t;)oO} are semigroups­

given by An and A in the sense of Theorem C respectively.

Proof. The limit limJ...nx exists in D for all ;1>0 (see [4J). If we define AcXx X by

U..>0 {[J..x, ;I-I (I-JAx) J; xEcoD}

then clearly AEr;l (0). For xEcoD, from

(12) ;I-I(I-J~XEAJJ.X

we have xE (1+ AA) J ..xcR (I +AA), that is,

(13) coDeR (1+ AA) .

Also by (12) we have JAx= (1+ AA) -IX for XEcoD. For yED (A), there exists XEcoD
such that y=J1XED, and hence D (A) cD. By (13) coD (A) eR (1+ AA) for ;1>0.
Therefore it follows from Theorem 1 that (11) holds true.

THEOREM 3. Let A be a function in the class r;l (w), O<w~ with R (1+ AA) =>coD (A)
for 0<;lw<I/2 and let An be a function in the class r;l (wn) , O<wn<a such that R (1+
.:lAx) =>coD (An) for 0<;lwn<l/2. If D (A) cD (An) for every n and ~ Anx=Ax for
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:rED (A) then for every :rED (A)

(14) !iE; T n (t) x= T (t) x

uniformly for t in every bounded interval of [0, =) where {Tn (t) ; t;;;?O} and {T (t) ; t?Or

are semigroups given by An and A in the sense of Theorem C respectively.

Proof. For xEcoD(A) there exists yED(A) such that x=y+AAy and ~i~ Any=Ay­

We have the estimate

11 J),.nx-J),x 11 = 11 J)"nx-y 11 = 1\ J)"nx-J),.n (y+AAnY) 11

(15) ~ (I-AWn) -111 x- (y+AAnY) 1\

= (1-AWn) -lily, j,Ay-y- AA,y 1\

~ (1-Aa) -1 11 Ay-AnY 11 .

Thus !~ J),.nx=J),x for xEcoD (A). From Theorem 1, (14) holds true.

CoROLLARY 4. Let An be a function in the class rJ ((Vn) , wn;;;?O such that R (I+AAn) :::::>

coD (An) for 0<Awn<1I2. Supposing that !~ W n exists and!~ Anx exists for xEE:
(c n:'-,D (An)) we denote the limits by W and Ax for xEE respectively. If D (A) =D
(An) for every n then AcrJ (w), w~O and R (1+ },A) :::leoD (A) for 0<ilw<1/2. More-

over for every xED (A)

(16) ~ Tn (t) x= T (t) x

uniformly for t in every bounded interval of [0,=), where {Tn(t); t;;:?O} and {T(t);.

t;;:?O} are semigroups given by An and A in the sense of Theorem C respectively.

Proof· Since AnErJ (wn), for Xh x2ED (A) we have

11 (Xl +AAnXl) - (X2+ AAnX2) 11 ~ (1- ilwn) 1\ Xl- X21l .
Asn~

II (xl+AAx1)-(X2+ AAx2) 1\;;;?(l-Aw) llxc x 211.

Thus AErJ (w), w;;;?O. Since R (I+AAn):::lcoD (An) =coD (A), for zEcoD (A) there exists:
:rED (An) such that z=x+AAnx. As n-->CO there exists xED(A) such that z=x+ilAx­
ER (1+ AA), that is, R (1+ AA) =>coD (A) for 0<Aw<I/2. Therfore by Theorem 3, (16)
holds true.

THEOREM 5. Let A be a function in the class rJ (w), O~w~a with R (I+AA) :::::>coD (A)
for 0<Aw<1I2. Let An be a function in the class rJ (wn), ~wn~a for each n such.
that R(1+AAn):::::> coD(An) for 0<Awn<1I2. If ¥~ Anx=Ax for xED(A) and D(A)

cD (An) for every n, then AEf1 (w), O~w~a with R (1+ AA) :::lcoD (A) for O<ilw<1/2.
Moreover for xED (A) =D (A)

(17) ~ Tn(t)x=T(t)x

uniformly for t in every bounded interval of [0, =) where {Tn(t) ; t;;:?O} and {T (t) ; t;;;?O}
are semigroups given by An and A in the sense of Theorem C respectively.

Proof. For zEcoD(A)cR(1+AA) there exists znER(I+AA) and xnED(An) such.
that

(18) zn=xn+AAxn and lim Zn=Z'
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Since AE,4(w), we have for Xn> xmED(A)

11 (xn+AAxn)-(xm+AAx".) 11 > (I-Aw) IIxn-xmll,

and hence ~ X n exists, we denote the limit by x. By (18) ~i~ Axn exists and it

equals to Ax for xED(A). Asn~ we have from (18} z=x+AAxER (1+ AA) . Thus
coD (A) eR (1+ AA). Since coD (A) =coD (A) we obtain R (1+ AA) -:=JcoD (A) for O<AW<

1/2. Since AE,4 ((0), we get for Xl. n, X2.nED (A) such that l!E: Xl.n=Xl and ¥~ X2.n=XZ,

11 (Xl. n+AAxl.n) - (X2.n +AAx2.n) II;;? (1- AW) 11 Xl. n- X2.n 11 .

Asn~

11 (XI+AAxI) - (X2+A..AX2) 11 ;;?(I-Aw) 11 xl-x211
for Xl,X2 ED (A) , and hence AE,4(w). Set Jl=(1+A..A)-l and Al=rI(1-Jl). Since

AlxEAJlX, there exists YmED (A) such that ~ y",=Jlx and ~~ Ay",=Alx. Therefore

we obtain ~ (y",+AAy".) =x. We have the estimate

11 Jl.nX-Jlx 11 ;;? 11 Jl.nx-y", 11 + 11 y",-Jlx 11

for xEcoD (A). Since A nE,4 (wn), ~wn~a,

11 Jl.nx-y", 11 ~ (I-Awn) -111 (hnX+AAnJl.nX) - (Y",+AAnY..) 11

~(I-Aa)-III X- (Y",+2AnY") 11

~ (I-Aa)-I{ 11 X- (y",+AAy..) 11 +A 11 AYm-AnY", II}·

First, for every e>O, we fix m sufficiently large such that

(I-Aa) -Ill x- (y",+AAy..) 11 <e/3, 11 y",-Jlx 11 <e/3.

Next we choose n sufficiently large such that

A(I-Aa) -111 Ay",-AnY", 11 <e/3.

Thus it follows that for xEcoD (A), lim J 1•nX=J1x. Hence by Theorem 1, (17) holds true.

CoROLLARY 6. Let An be a function in the class,4 (Wn) , ~wn~a such that R (I+AA»)

=:JcoD (An) for 0<2wn <l/2 and IL~ wn=w exists. If y~ Anx exists for xEE (en~~l

D (An)) we denote the limit by Ax for xEE, and if D (A) =D (An) for every n, then
A and A are in the class ,4 (w), O~w~a with R (I+AA) -:=JcoD (A) and R (1+ AA) -:=J
.coD (A) for 0<Aw<1/2. Moreover for every xED (A)

~~ Tn(t}x=T(t)x

uniformly for t in every bounded interval of [0, 00) where {Tn(t); t~O} and {T (t) ;
t>O} are semigroups given by An and A in the sense of Theorem C respectively.

Proof. Since A nE,4 (wn) we obtain for Xl> X2ED (A) =D (An)

11 (Xl+AAnXI) - (X2+ AAnX2) 11;;? (1- AWn) 11 Xl- x211 .
As n---¥XJ we have

11 (Xl+AAxl) - (X2+ AAx2) 11 >(1-Aw) 11 xl-x211·

Thus AEf1(w) , O~w~a. From R(1+AAn) -:=JcoD(AJ =coD(A), for zEcoD(A) there
exists xED(A) =D(An) such that z=x+AAnx. As n-+OO we have z=x+AAxER(I+
AA). Thus R(I+AA)-:=JR(I+AA)-:=JcoD(A) for 0<Aw<1/2, and hence AE,4(w), ~(O

<a. Therefore by Theorem 5 the proof is complete.
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As an application of Corollary 4 we consider the following.

THEOREM 7. Let S" be an operator from a closed convex subset Xo of X into itself such
.that

11 S"x-S,.y 1I <ewh'll X-Y 11 for x, yEXo
where w~O and h,,>O. h,,-+O+ as n->OO. Suppose that ~i~ h,,-l (I---S,,)X exists for every

xEXO, we denote the limit by Ax. If D (A) cXo and R (I -l- I.A) ::::lcoD (A) for 0<1.0<
1/2, then AEr;J (w) and for every xED (A),

( t )-"T(t)x=lim I+---A .:r
--- n

.uniformly for t in every bounded interval of [0. (0) where (T (t) ; t?:,O} is the semigroup
given by A in the sense of Theorem C.

Proof. PutA,,=h,,-I(I-Sn), thenD(A,,)=Xo• Forxh x2c-D(A),

11 (Xl+.:lA"Xl) - (X2+ .:lAnX2) 11

~ 11 (1+.:lhn -
l) (XI- X2) II-i,h,,-III S"xl-S"x211

~{I-Ah"-1 (e",h'-I)} 11 xl-x211.
'Set w,,=h,,-l (ewh·-I). Then

(19) 11 (xI+.:lA"XI)-(X2+.:lAnX2) 11?:'(l-i,('J,,) Il xl-x211,
and hence .4nEr;J (wn) and ~E; wn=w. As n->OO in (19) we have

11 (XI+AA.x1) - (X2+AA.x2) 11 ~ (1-1.(0) 11 xl-x211·
Thus AEr;J (w), and since R (1+ AA) ::::lcoD (A) for 0<i,w<1/2, we obtain A0 r;J (w)

and R (1+ .:lA) ::::lC015lAi =coD (A) as in the proof of Theorem 5. We shall show that
R(I+AA,,)::::lcoD(An)=Xo for sufficiently small ;;>0. Let::; --Xu• We define a mapping

K from Xo into itself by
(20) Kx= (17.:l/hn)-1 Z-7- i,hn-1 (1-;- Aih,,)ISn.r.
For Xl. X2-::::Xo, we have

IKXl- KX21 <J.!ln-1ewh, (P- A/hnl -1 I1 Xl - X2 ii ,
that is, K is a strict contraction for sufficiently small A>O. Hence there exists x- Su
such that Kx=x. By (20)

x= (1 +.:l/hn)-Iz+;lhn- l (1 + AIh,,) -I S"X,
z=x+;lAnxER (1+.:lAn).

Thus R (1-7- i,An) =>coD (An) for sufficiently small A>O. It follolVs from Theorem 5 that
for every xED (A)

lim T n(t) x=T (t) X
,-~

uniformly for t in every bounded interval of [0, (0), where ITn (t); t~O} is a semigroup
given by An in the sense of Theorem C. For every x"~ D (A) =D (A) we have the
estimate

I1 T(t)X-J"t/nxll~1I T(t)x-Tm(t)xli +- 11 Tm(t) x-Tt/n.m(t) X 11

+ 11 Tt/nom (t) x-J', '"mX I1 -'- 11 J' tln.mx-j' th X 11 .

By (5) we have

11 Tt/",m(t)x-J't/n.mx 1I < vtj'i:;K(t, t/n, (v) 11 A'/n.mx 11 ceVto/n K(to,to/n,co)M.
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Let tE [0, toJ. First, for every c>O we fix m sufficiently large such that

11 T(t)x-Tm (t)x 11 <c/4
and

11 Jnt/n.".x-Jnt/"x 11 <c/4
for every n. Next, we choose 11. sufficiently large such that

11 T m (t) x- Tt/n.mx 11 <c/4
and

..,Ito/n K(to, to/n, w) M<c/4.

Accordingly for every xED (A)

T(t)x=~ (I+t/nA)-n

uniformly for t in every bounded interval of [0, 00).

THEOREM 8. Let X* be uniformly convex and let An and A be closed m-accretivt
functions. If D (An) =D (A),

(21) ~ T,,(t)x=T(t)x

for xED (A) and l.~ Anx exists for xED (A) then ~ Anx=Ax for xED (A), where

{Tn(t); t:;;?O} and {T(t); t?O} are semigroups given by An and A zn the sense of
Theorem C respectively.

Proof. Put ~ Anx=Bx for xED (B) =D (A), then B is closed m-accretive. Let

{S (t); t;?:O} be a semigroup given by B in the sense of Theorem C. By Corollary 4 for
every xED(A)

(22) ~ T" (t) x=S (t) x

uniformly for t in every bounded interval of [0, 00). By (21) and (22) we have for
xED(A) =D(B) , T(t) x=S(t) x. It follows from Theorem D that Ax=Bx for xE

D (A) =D (B). Hence we obtain !~ Anx=Ax for xED (A).

REMARK. Let X be a Banach space the dual of which is uniformly convex and let A
and An be closed m-accretive functions. Put J 1= (1+ M) -1 and J;"n= (I+..:lA,,) -no Sup­
pose that {Tn(t); t~O} and {T(t); t?O} are semigroups given by An and A in the
sense of Theorem C respectively. By Theorem 1, Theorem 8 and (15), the following:
1), 2) and 3) are equivalent:

1) ~ J1.,,=J1,

2) ~ T" (t) = T (t) uniformly for tE [0, toJ,

3) ~ A,,=A.
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