ON THE GROSS DOMAIN OF A MEROMORPHIC FUNCTION

By Choi, Un Haing

Pommerenke and McMillan in [1] have defined a Gross domain of analytic functions in the unit disc. In this paper we define a star-shaped domain on the Riemann sphere and a Gross domain of a meromorpic function in the unit disc. Using this definition we prove that if f(z) is a meromorphic function in the unit disc. without Koebe arcs, which has asymptotic values on a dense set in an arc α on the unit circle, then for each point ζ on the arc α , either f(z) has an asymptotic value at ζ , or every neighborhood of ζ contains non-degenerate Gross domains of f(z).

Let S be a domain on the Riemann sphere Ω , and let P be a point in S, Q a point in Ω . By a suitable linear transformation L the point P may be transformed to the south pole, the point Q to the north pole. Then S is said to be (P, O)-star-shaped if the stereographic projection of L(S) is star-shaped with respect to the origin in the complex plane.

A domain S on the Riemann sphere is said to be star-shaped if it is (P, O)-star-shaped for some point P in S (the point P is called a center of S) and Q in Ω .

A Gross domain G of a meromorphic function on D is defined to be a subdomain of D having the following properties:

- (a) f(z) maps G one-to-one onto a star-shaped domain S on the Riemann sphere and
- (b) G is not properly contained in any other subdomain of D having the property (a).

The point in D corresponding to the center of S is said to be the center of the Gross domain G.

The arcs in D corresponding to the "rays" of S are defined to be the rays of G.

At most countably many rays of G join the center of G to the points in D which correspond to branch points of the Riemann Surface onto which f maps the unit disc. Any other ray of G joins the center of G to some point ζ on the unit circle, because otherwise f(z) would have Koebe arcs: and f(z) has an asymptotic valve at ζ (which is "rectilinearly" accessible on the Riemann sphere). We note that if f(z) is normal its asymptotic values are angular limits, by the theorem of Lehto and Virtanen [1].

It is clear that every point in D which does not correspond to a branch point of the Riemann surface (onto which f maps the unit disc) is the center of a Gross domain of f(z).

We begin by showing a lemma which will be used in the the proof of Theorem 1. LEMMA 1. Let f(z) be a meromorphic function on the unit disc, without Koebe arcs,

and assume that f(z) has asymptotic values on a dense set on the unit circle C, and let J_0 be an open arc on C. Assume that there exists a sequence of analytic Jordan arcs $J_n \subset D$ such that $J_n \to J_0$ and f(z) maps each J_n one-to-one onto a circle arc on the Riemann sphere. Then at each point ζ on J_0 , f(z) has an asymptotic value (which is "rectilinearly accessible" on the Riemann sphere.)

Proof. By taking a suitable subarc of J_n and by choosing a subsequence of J_n , if necessary, we may assume that the spherical length of each $f(J_n)$ is not greater than $\frac{\pi}{2}$ and that J_n converges to a subarc of J_0 containing ζ . Without loss of generality we may assume that the end points of the "segments" (circle arcs) $f(J_0)$ converge, respectively to the points w' and w'' on the Riemann sphere.

We may also assume that the "directions" of the segments $f(J_0)$ converge, and consequently that $f(J_n)$ "converges" as $n\to\infty$ to a "segment" L joining w' and w'' (which may be a single point if w'=w''). Choose a sequence $\{\zeta_m\}$ on C, converging to ζ , so that f(z) has asymptotic values $f(\zeta_m)$ along the Jordan arcs β_m at ζ_m , for each m. By choosing a subsequence of $\{\zeta_m\}$, if necessary, we may assume that $f(\zeta_m)$ converges to w_0 "monotonically". Choose n_i and m_i ($i=1,2,\ldots$) so that

- (1) J_{n_i} intersect β_{m_i} at the last point of intersection $z(n_i, m_i)$, and
- (2) J_{n_i} intersect β_{m_i} at $z(n_{i+1}, m_i)$, $\beta_{m_{i+1}}$ at the last point of intersection $z(n_{i+1}, m_{i+1})$. Let γ_i be the subarc of β_{m_i} between $z(n_i, m_i)$ and $z(n_{i+1}, m_i)$, and let γ'_i be the subarc of $J_{n_{i+1}}$ between $z(n_{i+1}, m_i)$ and $z(n_{i+1}, m_{i+1})$.

We choose n_i and m_i (i=1, 2, ...) so that the spherical length of $f(\gamma'_i) \to 0$ as $i \to \infty$. Consider

$$\gamma = \gamma_1 + \gamma_1' + \gamma_2 + \gamma_2' + \cdots$$

Then along this arc at ζ , f(z) has the asymptotic value w_0 . This completes the proof.

THEOREM 1. Let f(z) be a meromorphic function in the unit disc, without Koebe arcs, which has asymptotic values on a dense set in an arc α on the unit circle C. Then for each point ζ on the arc α , either,

- (a) f(z) has an asymptotic value at ζ , or
- (b) every neighborhood of ζ contains non-degenerate Gross domains of f(z), and furthermore $\delta(\zeta, d) \to 0$ as $d \to 0$, where $\delta(\zeta, d)$ denotes the supremum of the euclidean diameters of the Gross domains of f(z) intersecting $\{z: |z-\zeta| \le d\}$.

Proof. We assume that $\lim_{d\to 0} \sup \delta(\zeta, d) > 0$ and prove that f(z) has an asymptotic value at ζ . By this assumption there exists a sequence of Jordan arcs $J_{1,n} \subset D$ having the following properties:

- (a) f(z) maps each $J_{1.n}$ one-to-one onto a segment (of a circle) $f(J_{1.n})$ on the Riemann sphere;
- (b) for some r_1 (0 $< r_1 < 1$) every $J_{1:n}$ has an end point on $\{z: |z-\zeta| = r_1\}$ and lies, except for this point, in $\{z: |z-\zeta| < r_1\}$; and
- (c) the other endpoint $z_{1.n}$ tends to ζ .

If there exists an arc J_0 on C having ζ as an endpoint and satisfying the hypothesis of the lemma, clearly f(z) has an asymptotic value at ζ . Thus we only need to consider the

case where no such J_0 exists. Then by the lemma there exists some point $z_1 \in D$, $|z_1 - \zeta| < r_1$, such that every neighborhood of z_1 intersects infinitely many $J_{1,n}$. Set $r_2 = \frac{|z_1 - \zeta|}{2}$, and let $\{J_{1,n}\}$ be a subsequence of $\{J_{1,n}\}$ such that every neighborhood of z_1 intersects all except finitely many $J_{1,n}$, and such that every $z_{1,n}$, is in $\{z; |z-\zeta| < r_2\}$. Let $J_{2,k}$ be the subarc of $J_{1,n}$, joining $J_{1,n}$ to a point on $\{z: |z-\zeta| = r_2\}$ and lying, except for this point, in $\{z: |z-\zeta| < r_2\}$. Again by the lemma there exists some point $z_2 \in D \cap \{z: |z-\zeta| < r_2\}$, such that every neighborhood of z_2 intersects infinitely many $J_{2,k}$. Continuing in this way, we define a subsequence $\{J_{m,m}\}$. Since the $f(J_{m,n})$ are segments of circles, all of the points $w_m = f(z_m)$ lie on the same segment of a circle. They are all distinct because otherwise f(z) would be constant. Furthermore the w_m tend "monotonically" along this segment to a finite or infinite w_0 . Hence

$$L = [w_1, w_2] + [w_2, w_3] + \cdots$$

is a segment of a circle ending at w_0 .

Let D_m be an open disc about z_m contained in $\{z: |z-z_m| < r_m\}$ such that the spherical diameter of $f(D_m)$ tends to zero as m tends to ∞ . For each m there exists an n such that J_m , contains a subarc J_m having its initial point in D_m and its terminal point in D_{m+1} . We join the terminal point of J_m to the initial point of J_{m+1} by an arc L_m lying in D_{m+1} . Then

$$\Gamma = J_1 + L_1 + J_2 + L_2 + \cdots$$

is an arc in D ending at ζ along which f(z) has the asymptotic value w_0 .

We now prove that every neighborhood of ζ contains non-degenerate Gross domains of f(z), provided that $\partial(\zeta, d) \to 0$ as $d \to 0$. We only need to consider the case where every neighborhood of ζ contains a Gross domain whose image under f(z) is the Riemann sphere minus a closed circle arc.

Consider any Gross domain G with this property, and take the closed circle are to be the closed great circle arc whose stereographic projection is the non-negative real axis. We now think of f(G) as being on the Riemann surface R over the Riemann sphere onto which f(z) maps D. There is a largest subdomain R_0 of R containing f(G) and having the property that R_0 is a copy of the Riemann surface over the Riemann sphere onto which e^z maps a domain of the form

$$\{x+iy: -\infty \leq y_1 \leq y_2 \leq \infty\}$$
.

Either $y_1 > -\infty$ or $y_2 < +\infty$, because R is of hyperbolic type, and thus cannot contain a copy of the logarithmic surface, otherwise $f^{-1} \circ e^z$ would map the whole plane into D and f must be a constant. Thus there exists a point $P_0 \in R_0$ with the following properties: $|w_0|$ is large, where w_0 is the stereographic projection of the projection of P_0 onto the Riemann sphere; and P_0 is near an "edge" of R_0 , in the sense that some curve on R_0 beginning at P_0 and tending to the boundary of R_0 is such that the euclidean diameter of the stereographic projection of the projection onto the Riemann sphere is small. Let Z_0 be the point of D corresponding under f(z) to P_0 . The Gross domain G_0 of f(z) whose center is Z_0 has a ray whose image under f(z) is a segment joining w_0 to the south pole.

If the south pole is an interior point of the ray, there exists a small disc about this point, and then R could be extended, contrary to the choice of R.

If $f(G_0)$ were the sphere minus a closed great circle arc connecting the south pole to the north pole, we could make R_0 larger, contrary to the definition of R_0 . Thus G_0 is a non-degenerate gross domain of f(z).

The point Z_0 can be joined to a point of G by a Jordan arc the stereographic projection of whose image under f(z) lies on $\{w:|w|=|w_0|\}$. Thus, since f(z) has no sequence of Koebe arcs for the value ∞ , we can make G_0 (which depends on P_0) have points as near as we like to G by taking w_0 to be sufficiently large (for, let $C^{(n)}$ and $G_0^{(n)}$ be the corresponding arc, Gross domain, the nondegenerate gross domain, respectively, then since f(z) has no Koebe arcs, the diameter of $C^{(n)}$ tends to 0 as $n \to \infty$. Hence the distance between $G^{(n)}$ and $G_0^{(n)}$ tends to zero as n tends to infinity). Therefore, since $\delta(\zeta, d) \to 0$, every neighforhood of ζ contains ternary Gross domains of f(z). This completes the proof of Theorem 1.

REMARK: The main argument in the above proof is essentially found in Pommerenke and McMillan [1]. We have modified their proof using Lemma 1.

As a corollary we have the following

THEOREM 2. Let f(z) be a normal meromorphic function in the unit disc, which has asymptotic values on a dense set on the unit circle C. Then for each point on the unit circle C, either

- (a) f(z) has finite angular limits at almost all points of some open arc containing ζ , or
- (b) every neighborhood of ζ contains non-degenerate Gross domains f(z), and furthermore $\delta(\zeta, d) \to 0$ as $d \to 0$, where $\delta(\zeta, d)$ denotes the supremum of the euclidean diameters of the Gross domains of f(z) intersecting $\{z: |z-\zeta| < d\}$.

Proof. Bagehmihl and Seidel [1] have shown that a non-constant normal meromorphic function has no Koebe arcs. Use Theorem 1 and the well known theorem of Lehto and Virtanen [1] that if a normal meromorphic function has the asymptotic value C at ζ , then f(z) has the angular limit C at ζ . Then Lusin-Privalov theorem (Privalov [1], p. 212) that almost all angular limits are finite completes the proof.

References

Bagehmihl, F. and Seidel, W.

- [1] Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), 9-18. Lehto, O. and Virtanen, K. I.
- [1] Boundary behavior and normal meromorphic functions, Acta Math. 97 (1957), 47-65. Pommerenke, Ch. and McMillan, J. E.
- [1] On the boundary behavior of analytic functions without Koebe arcs, Math. Ann. 189 (1970), 275-279.

Privalov, I. I.

[1] Randeigenschaften analytischer Finktionen. Deutscher Verlag der Wissenschaften, Berlin,

Inha Institute of Technology