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ON THE GROSS DOMAIN OF A MEROMORPHIC FUNCTION

By ChHoi, UNn HAING

Pommerenke and McMillan in [1] have defined a Gross domain of analytic functions
in the unit disc. In this paper we define a star-shaped domain on the Riemann sphere
and a Gross domain of a meromorpic function in the unit disc. Using this definition
we prove that if f(z) is a meromorphic function in the unit disc. without Koebe arcs,
which has asymptotic values on a depse set in an arc « on the unit circle, then for
each point  on the arc @, either f(z) has an asymptotic valve at {, or every neigh-
borhood of I contains non-degenerate Gross domains of f(z).

Let S be a domain on the Riemann sphere {), and let P be a point in S, Q a point
in . By a suitable linear transformation L the point P may be transformed to the
south pole, the point Q to the north pole. Then S is said to be (P, O)-star-shaped
if the stereographic projection of L(S) is star-shaped with respect to the origin in the
complex plane.

A domain S on the Riemann sphere is said to be star-shaped if it is (P, O) -star-shaped
for some point P in S (the point P is called a center of S} and Q in ).

A Gross domain G of a meromorphic function on D is defined to be a subdomain of
D having the following properties:

{a) f(2) maps G one-to-one onto a star-shaped domain § on the Riemann sphere
and

(b) G is not properly contained in any other subdomain of D having the property
(a).

The point in D corresponding to the center of S is said to be the center of the Gross
domain G.

The arcs in D corresponding to the “rays” of S are defined to be the rays of G.

At most countably many rays of G join the center of G to the points in D which
corresponed to branch points of the Riemann Surface onto which f maps the unit disc.
Any other ray of G joins the center of G to some point ¢ on the unit circle, because
otherwise f(z) would have Koebe arcs: and f(z) has an asymptotic valve at { (which
is “rectilinearly” accessible on the Riemann sphere). We note that if f(z) is normal
its asymptotic values are angular limits, by the theorem of Lehto and Virtanen [1].

1t is clear that every point in D which does not correspond to a branch point of the
Riemann surface (onto which f maps the unit disc) is the center of a Gross domain of
fl=).

We begin by showing a lemma which will be used in the the proof of Theorem 1.

LEMMA 1. Let f(z) be a meromorphic function on the unit disc, without Koebe arcs,
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and assume that f(z) has asymptotic values on a dense set on the unit circle C, and fec
Jo be an open arc on C. Assume that there exists a sequence of analytic Jordan arcs
J.<=D such that J,—Jy and f(z) maps each J, one-to-ome onto a circle arc on the
Riemann sphere. Then at each point { on Jy, flz) has an asymptotic value (which is
“rectilinearly accessible” on the Riemann sphere.)

Proof. By taking a suitable subarc of J, and by choosing a subsequence of J,, if
necessary, we may assume that the spherical length of each f(J,) is not greater than

% and that J, converges to a subarc of Jy containing . Without loss of generality we

may assume that the end points of the “segments” (circle arcs) f(Jy) converge, respe-
ctively to the points w’ and w’’ on the Riemann sphere.

We may also assume that the “directions” of the segments f(J;) converge, and
consequently that f(J,) “converges” as n—c0 to a “segment” L joining w’ and w’’
(which may be a single point if w’=w'"). Choose a sequence {{,} on C, converging
to {, so that f(z) has asymptotic values f{Z,) along the Jordan arcs g, at &, for
each m. By choosirg a subsequence of {{.}, if necessary, we may assume that f({,)
converges to wy “monotonically”. Choose 7; and m; (i=1,2,...) so that
(1) Ja; intersect Bm; at the last point of intersection z (n;, m;), and
(2) Ja, intersect Sm; at z(n;:;, M), Pm,., at the last point of intersection z(mi11, misy).

Let 7; be the subarc of §,, between z(n;, m) and =z(m1, m), and let 7’; be the

subarc of J,., between z(ny;, m) and z (41, m).

We choose 7; and m; (i=1,2,...) so that the spherical length of f{(y’) —0 as i—<co,
Consider

r=n+n'trtr’+ ..
Then along this arc at J, f(z) has the asymptotic value w,. This completes the proof.

THEOREM 1. Let f(z) be a meromorphic function in the unit disc, without Koebe arcs,
which has asymptotic values on a dense set in an arc a on the unit circle C. Then for
each point L on the arc «, either,

(a) f(2) has an asymptotic value at C, or

(b) every neighborhood of { contains non-degenerate Gross domains of f(z), and
furthermore 6({,d)—0 as d—0, where 5 ({,d) denotes the supremum of the
euclidean diameters of the Gross domains of f(2) intersecting {z:|z—C|<d}.

Proof., We assume that lir_r: sup 6(Z,d) >0 and prove that f(z) has an asymptotic

value at {. By this assumption there exists a sequence of Jordan arcs J,,=D having
the following properties:
{a) f(z) maps each J;, one-to-one onto a segment (of a circle) f(J;. ,) on the
Riemann sphere;
(b} for some r, (0<r;<{1) every Ji., has an end point on {z:]2—C|=r] and lies,
except for this point, in f{z:|z—{|<ri}; and
(¢) the other endpoint 2;., tends to {.
If there exists an arc J; on C having { as an endpoint and satisfying the hypothesis of
the lemma, clearly f(z) has an asymptotic value at {. Thus we only need to consider the
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case where no such Jy exists. Then by the lemma there exists some point 2D, |z
—2|<ry, such that every neighborhood of z; intersects infinitely many Jy, Set

r2=—|—zl——2——:~|—, and let {Ji.,}be a subsequence of {J;.} such that every neighborhood

of z; intersects all except finitely many Jy.,., and such that every =y, is in {z;]:—1|
<rs}. Let Jy, be the subarc of J,, joining Jy, to a point on {z:[=—] —=r,) and lving,

except for this point, in {s:|z—1!<lry}. Again by the lemma there exists some point
222D {zt]z- 21 <rs}, such that every neighborhocd of =z, intersects infinitely many
Joi. Continuing in this way, we define a subsequence {J,.}. Since the f{J,, are
segments of circles, all of the points w,=f(z,) lie on the same segment of a circle.
They are all distinct because otherwise f(z) would be constant. Furthermore the @,
tend “monotonically” along this segment to a finite or infinite wy. Hence
L={w, wyl+{us ws +---

is a segment of a circle ending at wy.

Let D, be an open disc about z, contained in {z:{z—=z,|{<r,} such that the spherical
diai.eter cf f(D,) tends to zero as m tends to co. For each m there exists an n such
that .J,,, contains a subarc J, having its initial point in D, and its terminal point in
D,..;. We join the terminal point of .J,, to the initial point of J,.; by an arc L,
lying in D,,;. Then

IF'=Ji+Li+Jdy+ Lyt - -
is an arc in D ending at I along which f(2) has the asymptotic value w,.

We now prove that every neighborhood of { contains non-degenerate Gross domains
of f(z), provided that 5({,d)—0 as d—0. We only need to consider the case where
every neighborhood of { contains a Gross domain whose image under f{z) is the Rie-
mann sphere minus a closed circle arc.

Consider any Gross domain G with this property, and take the closed circle are to
be the closed great circle arc whose stereographic projection is the non-negative real
axis. We now think of f(G) as being on the Riemann surface R over the Riemann
sphere onto which f(z) maps D. There is a largest subdomain R, of R containing
f(G) and having the property that Ry is a copy of the Riemann surface over the Rie-
mann sphere onto which ¢* maps a domain of the form

{2+ dy: — 0oy yp<od}

Either y:.>>—00 or ys<{+00, because R is of hyperbolic type, and thus cannot contain
a copy of the logarithmic surface, otherwise f~'c ¢ would map the whole plane into
D and f must be a constant. Thus there exists a point Py=Ry with the following
properties: |wy!| is large, where wy is the stereographic projection of the projection of
P, onto the Riemann sphere; and P, is near an “edge” of Ry, in the sense that some
curve on Ry beginning at Py and tending to the boundary of Rg is such that the euclid-
ean diameter of the stereographic projection of the projection onto the Riemann sphere
is small. Let Z, be the point of D corresponding under f(z) to P;. The Gross domain
G, of f(2) whose center is Zy has a ray vlose image under f(z) is a segment joining
wy to the south pole.

If the south pole is an interior point of the ray, there exists a smail disc about this
point, and then R could be extended, contrary to the choice of R.
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If f(Go) were the sphere minus a closed great circle arc connecting the south pole to
the north pole, we could make R, larger, contrary to the definition of Ry. Thus G is
a non-degenerate gross domain of f(z).

The point Z, can be joined to a point of G by a Jordan arc the stereographic projec-
tion of whose image under f(z) lies on f{w:|w|=|wp|}. Thus, since f(z) has no
sequence of Koebe arcs for the value 00, we can make Gy(which depends on P) have
points as near as we like to G by taking wy to be sufficiently large (for, let C™ and
Go™ be the corresponding arc, Gross domain, the nondegenerate gross domain, respec-
tively, then since f(2) has no Koebe arcs, the diameter of C™ tends to 0 as n—cno.
Hence the distance between G and G, tends to zero as z tends to infinity). There-
fore, since 3(Z, d)—0, every neighforhood of ¢ contains ternary Gross domains of
f{z). This completes the proof of Theorem 1.

REMARK: The main argument in the above proof is essentially found in Pommerenke
and McMillan [17. We have modified their proof using Lemma 1.

As a corollary we have the following

THEOREM 2. Let f(2) be a normal meromorphic function in the unit disc, which has
asymptotic values on a dense set on the unit circle C. Then for each point on the wunit
circle C, either

(a) flz) has finite angular limits at almost all points of some open arc containing
g, or
(b) every neighborhood of [ contains non-degenerate Gross domains f(z), and fur-
thermore 6((, d)—0 as d—0, where 3(C, d) denotes the supremum of the euclid-
ean diameters of the Gross domains of f(z) intersecting

{z:[2—C[<d}.

Proof. Bagehmihl and Seidel [1] have shown that a non-constant normal meromorphic
function has no Koebe arcs. Use Theorem 1 and the well known theorem of Lehto and
Virtanen [1] that if a normal meromorphic function has the asymptotic value C at ,
then f(z) has the angular limit C at {. Then Lusin-Privalov theorem (Privalov (1],
p.212) that almost all angular limits are finite completes the proof.
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